
- •Оглавление
- •1. Предмет социологии
- •2. Общество и личность.
- •3. Социальные законы функционирования и развития общества
- •4. Формы проявления и механизмы действия социальных законов
- •1. Общая социологическая теория
- •2. Теоретический и эмпирический уровни социологического познания. Теоретическая и прикладная социология
- •3. Специальные социологические теории и эмпирические исследования
- •1. Основные условия и формы жизнедеятельности общества. Способ производства и образ жизни
- •2. Социальная структура и социальные отношения
- •3. Социально-территориальные общности
- •4. Социально-политическая организация общества и социальные институты
- •5. Духовная жизнь общества. Средства массовой информации и пропаганды Социальные проблемы идеологической деятельности
- •5. Социальное планирование. Социальные показатели
- •1. Постановка проблемы. Цели и задачи исследования
- •2. Определение объекта и предмета исследования
- •3. Интерпретация и операционализация понятий
- •4. Выдвижение и проверка гипотез
- •5. Организационно-методический план исследования
- •6. Рабочий план исследования и подготовка исполнителей
- •1. Понятие измерения в социологии. Уровни измерения
- •2. Группировка материала статистических наблюдений
- •3. Графическая интерпретация эмпирических зависимостей
- •4. Средние величины и характеристики рассеяния значений признака
- •5. Нормальное распределение. Статистические гипотезы
- •6. Статистические взаимосвязи и их анализ
- •7. Новые подходы к анализу данных, измеренных по порядковым и номинальным шкалам
- •1. Основные понятия выборочного метода
- •2. Простой случайный отбор
- •3. Систематическая и серийная выборки
- •4. Стратифицированный отбор
- •5. Многоступенчатые и комбинированные способы формирования выборочной совокупности
- •6. Неслучайные методы отбора и другие подходы к построению выборки
- •1. Виды шкал
- •402. Насколько Вы лично удовлетворены следующими сторонами своей жизни?
- •2. Некоторые методы измерения
- •3. Надежность измерения социальных характеристик
- •1. Понятие документа. Классификация документов
- •2. Методы анализа документов
- •3. Выборка документов и проблемы качества документальной информации
- •1. Понятие наблюдения.
- •2. Программа наблюдения
- •3. Виды наблюдения
- •4. Фиксация результатов. Подготовка наблюдатели
- •1. Понятие опроса
- •2. Критерии качества данных опроса
- •3. Основные фазы опроса
- •4. Типы и виды вопросов
- •5. Разновидности опроса
- •6. Эмпирическое обоснование методики опроса
- •1. Социометрический опрос
- •2. Обработка и анализ результатов социометрического опроса
- •3. Социометрические индексы
- •1. Понятие эксперимента
- •2. Экспериментальные переменные
- •3. Виды экспериментов
- •4. Обработка экспериментального материала
- •1. Подготовка данных к анализу на эвм
- •2. Описание и объяснение в социологическом исследовании
- •3. Способы проверки гипотез
3. Графическая интерпретация эмпирических зависимостей
Частотные распределения изображаются также в виде диаграмм и графиков. Главным достоинством графического изображения является его наглядность.
Графическая интерпретация эмпирических зависимостей основана на знании технических правил построения рядов, типов и свойств теоретических распределений. Здесь мы рассмотрим графики вариационных рядов: гистограмму, полигон и кумуляту распределения.
Гистограмма. Гистограмма — это графическое изображений интервального ряда. По оси абсцисс откладывают границы интервалов, на которых строят прямоугольники с высотой, пропорциональной плотностям распределения соответствующих интервалов (пропорциональной числу единиц совокупности, приходящейся па единицу длины интервала). При равных интервалах плотности распределения
Рис. 1. Гистограмма распределения соотношения брачных возрастов разводящихся супругов
пропорциональны частотам, которые и откладываются по оси ординат (рис. 1, табл. 2).
Таблица 2. Распределение брачных возрастов разводящихся супругов.
Показатели |
Муж старше жены (на сколько лет) |
|||||||
меньше года |
1-2 |
2-3 |
3-4 |
4-6 |
6-8 |
8-10 |
10 и более |
|
Число людей |
6 |
12 |
11 |
19 |
14 |
7 |
1 |
13 |
% к общему числу |
7,2 |
14,5 |
13,2 |
22,9 |
16,9 |
8,4 |
1,2 |
15,7 |
Накопленная частота |
6 |
18 |
29 |
48 |
62 |
69 |
70 |
83 |
Накопленная относительная частота, % |
7,2 |
21,7 |
34,9 |
57,8 |
74,7 |
83,1 |
84,3 |
100 |
На гистограмме общее число лиц в каждой категории выражается площадью соответствующего прямоугольника, а общая площадь равна численности совокупности (так как гистограмма на рис. 1 строится по относительным частотам, то площадь равна единице (100%)). Поэтому для интервалов 4—6, 6—8, 8—10 в табл. 2, которые в 2 раза больше предыдущих, нужно брать высоты прямоугольников в 2 раза меньшие. При нанесении на графике последнего открытого интервала 10 лет и более условно будем считать верхней его границей 40 лет. Тогда ширина интервала равна 30 годам, а плотность распределения — около 0,5% (15,7 : 30 0,5).
Полигон распределения. Для построения полигона величина признака откладывается на оси абсцисс, а частоты или относительные частоты — на оси ординат. Из точек, соответствующих значениям признака, восстанавливаются перпендикуляры, равные по высоте частотам. Вершины перпендикуляров соединяются прямыми линиями.
Для интервального ряда ординаты, пропорциональные частоте (или относительной частоте) интервала, восстанавливаются перпендикулярно оси абсцисс в точке, соответствующей середине данного интервала.
Следующие данные распределения рабочих в возрасте до 24 лет по тарифным разрядам (высококвалифицированные рабочие сельхозмашиностроения)83 дают возможность построить полигон распределения (рис. 2):
Разряд |
I |
II |
III |
IV |
V |
VI |
Численность, % к итогу |
8,4 |
22,6 |
31,9 |
24,1 |
6,2 |
0,3 |
Накопленные частоты |
8,4 |
31,0 |
62,3 |
87,0 |
93,2 |
93,5 |
Условно принято крайние ординаты признака соединять с серединами примыкающих интервалов (на рис.. 2 эти замыкающие линии нанесены пунктиром). Однако для распределения, где концентрация событий увеличивается на концах полигона, такое изображение может привести к ложным представлениям о существе явления.
Кумулята. Для графического изображения вариационных рядов используются также кумулятивные кривые. При построении кумуляты, как и гистограммы, на оси абсцисс откладываются границы интервалов (либо значения дискретного признака), а на оси ординат — накопленные частоты {либо относительные частоты), соответствующие верхним границам интервалов. Таким образом, отличие кумуляты от гистограммы в том, что на графике кумуляты столбики, пропорциональные частотам, последовательно накладываются: один на другой, так что высота последнего столбика является суммой высот столбиков гистограммы.
Кумулята округляет индивидуальные значения признака .в пределах интервала и представляет собой возрастающую ломаную линию.
Кумулята позволяет быстро определить процент лиц, находящихся ниже или выше заданной величины признака. Например, по данным табл. 3, процент семейств, в которых муж старше супруги не более, чем на 5 лет, равен 65 (рис. 3, точка А).
Число лет
Рис. 2. Полигон распределения работающих по тарифным разрядам
Рис. 3. Кумулята распределения соотношения брачных возрастов разводящихся супругов
Вид (форма) кривых распределений. Кривые, полученные в результате графического представления эмпирических данных, могут иметь разнообразную форму. Среди них можно выделить относительно небольшое количество простых типов. Некоторые возможные формы распределений приведены на рис. 4. Анализ формы кривых иногда помогает в выявлении внутренней, скрытой структуры исследуемой совокупности. Например, можно предположить, что форма кривой в обусловлена наложением двух кривых: а и б, иначе говоря, предположить, что существует третья скрытая переменная (или группа переменных), детерминирующая расчленение совокупности на две группы.
Существует множество конкретных примеров того, как графический анализ стимулирует дальнейшее развитие исследовательской мысли.
Теоретическое распределение. Сбор эмпирической информации может быть осуществлен двумя путями: исследованием всей совокупности социальных объектов, которые являются предметом изучения в пределах, очерченных программой социологического исследования, и изучением лишь части этих объектов. В первом случае исследование называется сплошным, а множество социальных объектов — генеральной совокупностью, во втором исследование называется выборочным, а выделенная часть объектов — выборкой84.
Одна из основных задач статистики состоит в том, чтобы по данным выборки оценить параметры генеральной совокупности.
Гистограмма и полигон распределения, построенные на основ эмпирических данных выборки, позволяют выявить лишь приближенную картину реального распределения в генеральной совокупности.
Рис. 4.
Различные формы кривых распределения
Рис. 5.
Теоретическая кривая распределения
При увеличении выборочной совокупности и все большем дроблении величины интервалов эмпирическое распределение в вида гистограммы или полигона все более приближается к некоторой кривой, называемой кривой распределения.
Если группировочный признак является непрерывной величиной, то в предельном случае при постепенном уменьшении величин и интервала полигону и гистограмме будет соответствовать некоторая Гладкая кривая (рис. 5). Эта кривая распределения, являющаяся предельным случаем полигона данного эмпирического распределения, называется по установившейся, терминологии кривой плотности распределения. Обозначим .соответствующую функцию f(x).
В терминах теории вероятностей плотность распределения можно трактовать следующим образом: вероятность (p) того, что случайная величина () примет значение из достаточно малого интервала (xixi+1), равна произведению длины интервала на высоту прямоугольника (f(xi)), т. е.
Для интервала произвольной длины суммированием этих значений получим, что
Отсюда приходим к определению фундаментального понятия теории вероятностей — функции распределения (F) случайной величины (), которая по определению есть
Знание функции распределения дает исчерпывающее представление о поведении совокупности в отношении изучаемого признака, поэтому определение типа распределения признаков представляет одну из задач исследования массовых явлений/