Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Программирование на C / C++ / Ален И. Голуб. Правила программирования на Си и Си++ [pdf]

.pdf
Скачиваний:
235
Добавлен:
02.05.2014
Размер:
5.67 Mб
Скачать

С++ для начинающих

42

IntArray array1(1024);

то значение 1024 будет передано в конструктор. Если же размер не задан, допустим:

IntArray array2;

то в качестве значения отсутствующего параметра конструктор принимает величину DefaultArraySize. (Не будем пока обсуждать использование ключевого слова static в определении члена DefaultArraySize: об этом говорится в разделе 13.5. Скажем лишь,

что такой член данных существует в единственном экземпляре и принадлежит одновременно всем объектам данного класса.)

IntArray::IntArray (int sz)

{

//инициализация членов данных

_size = sz;

ia = new int[_size];

//инициализация элементов массива for (int ix=0; ix<_size; ++ix)

ia[ix] = 0;

Вот как может выглядеть определение нашего конструктора по умолчанию:

}

Это определение содержит несколько упрощенный вариант реализации. Мы не позаботились о том, чтобы попытаться избежать возможных ошибок во время выполнения. Какие ошибки возможны? Во-первых, оператор new может потерпеть неудачу при выделении нужной памяти: в реальной жизни память не бесконечна. (В разделе 2.6 мы увидим, как обрабатываются подобные ситуации.) А во-вторых, параметр sz из-за небрежности программиста может иметь некорректное значение, например нуль или отрицательное.

Что необычного мы видим в таком определении конструктора? Сразу бросается в глаза первая строчка, в которой использована операция разрешения области видимости (::):

IntArray::IntArray(int sz);

Дело в том, что мы определяем нашу функцию-член (в данном случае конструктор) вне тела класса. Для того чтобы показать, что эта функция на самом деле является членом класса IntArray, мы должны явно предварить имя функции именем класса и двойным двоеточием. (Подробно области видимости разбираются в главе 8; области видимости применительно к классам рассматриваются в разделе 13.9.)

Второй конструктор класса IntArray инициализирует объект IntArray значениями элементов массива встроенного типа. Он требует двух параметров: массива встроенного типа со значениями для инициализации и размера этого массива. Вот как может

int ia[10] = {0,1,2,3,4,5,6,7,8,9};

выглядеть создание объекта IntArray с использованием данного конструктора:

IntArray iA3(ia,10);

С++ для начинающих

43

Реализация второго конструктора очень мало отличается от реализации конструктора по

IntArray::IntArray (int *array, int sz)

{

// инициализация членов данных

_size = sz;

ia = new int[_size];

// инициализация элементов массива for (int ix=0; ix<_size; ++ix)

ia[ix] = array[ix];

умолчанию. (Как и в первом случае, мы пока опустили обработку ошибочных ситуаций.)

}

Третий конструктор называется копирующим конструктором. Он инициализирует один объект типа IntArray значением другого объекта IntArray. Такой конструктор вызывается автоматически при выполнении следующих инструкций:

IntArray array;

// следующие два объявления совершенно эквивалентны: IntArray ia1 = array;

IntArray ia2 (array);

Вот как выглядит реализация копирующего конструктора для IntArray, опять-таки без

IntArray::IntArray (const IntArray &rhs )

обработки ошибок:

{

//инициализация членов данных

_size = rhs._size; ia = new int[_size];

//инициализация элементов массива for (int ix=0; ix<_size; ++ix)

ia[ix] = rhs.ia[ix];

}

В этом примере мы видим еще один составной тип данных ссылку на объект, которая обозначается символом &. Ссылку можно рассматривать как разновидность указателя: она также позволяет косвенно обращаться к объекту. Однако синтаксис их использования различается: для доступа к члену объекта, на который у нас есть ссылка, следует использовать точку, а не стрелку; следовательно, мы пишем rhs._size, а не rhs->_size. (Ссылки рассматриваются в разделе 3.6.)

Заметим, что реализация всех трех конструкторов очень похожа. Если один и тот же код повторяется в разных местах, желательно вынести его в отдельную функцию. Это облегчает и дальнейшую модификацию кода, и чтение программы. Вот как можно модернизировать наши конструкторы, если выделить повторяющийся код в отдельную функцию init():

С++ для начинающих

44

class IntArray { public:

explicit IntArray (int sz = DefaultArraySize); IntArray (int *array, int array_size); IntArray (const IntArray &rhs);

// ...

private:

void init (int sz,int *array); // ...

};

// функция, используемая всеми конструкторами void IntArray::init (int sz,int *array)

{

_size = sz;

ia = new int[_size];

for (int ix=0; ix<_size; ++ix) if ( !array )

ia[ix] = 0; else

ix[ix] = array[ix];

}

// модифицированные конструкторы

IntArray::IntArray (int sz) { init(sz,0); } IntArray::IntArray (int *array, int array_size)

{init (array_size,array); } IntArray::IntArray (const IntArray &rhs)

{init (rhs._size,rhs.ia); }

Имеется еще одна специальная функция-член деструктор, который автоматически вызывается в тот момент, когда объект прекращает существование. Имя деструктора совпадает с именем класса, только в начале идет символ тильды (~). Основное назначение данной функции освободить ресурсы, отведенные объекту во время его создания и использования. Применение деструкторов помогает бороться с трудно обнаруживаемыми ошибками, ведущими к утечке памяти и других ресурсов. В случае класса IntArray эта функция-член должна освободить память, выделенную в момент создания объекта. (Подробно конструкторы и деструкторы описаны в главе 14.) Вот как выглядит

class IntArray {

деструктор для IntArray:

public:

// конструкторы

explicit IntArray (int sz = DefaultArraySize); IntArray (int *array, int array_size); IntArray (const IntArray &rhs);

// деструктор

~IntArray() { delete[] ia; }

//...

private:

//...

};

С++ для начинающих

45

Теперь нам нужно определить операции доступа к элементам массива IntArray. Мы хотим, чтобы обращение к элементам IntArray выглядело точно так же, как к элементам

IntArray array;

массива встроенного типа, с использованием оператора взятия индекса: int last_pos = array.size()-1;

int temp = array[0]; array[0] = array[last_pos]; array[last_pos] = temp;

Для реализации доступа мы используем возможность перегрузки операций. Вот как

#include <cassert>

int& IntArray::operator[] (int index)

{

assert (index >= 0 && index < _size); return ia[index];

выглядит функция, реализующая операцию взятия индекса:

}

Обычно для проектируемого класса перегружают операции присваивания, операцию сравнения на равенство, возможно, операции сравнения по величине и операции ввода/вывода. Как и перегруженных функций, перегруженных операторов, отличающихся типами операндов, может быть несколько. К примеру, можно создать

несколько операций присваивания объекту значения другого объекта того же самого или иного типа. Конечно, эти объекты должны быть более или менее похожи”. (Подробно о перегрузке операций мы расскажем в главе 15, а в разделе 3.15 приведем еще несколько примеров.)

Определения класса, различных относящихся к нему констант и, быть может, каких-то

еще переменных и макросов по принятым соглашениям помещаются в заголовочный файл, имя которого совпадает с именем класса. Для класса IntArray мы должны создать заголовочный файл IntArray.h. Любая программа, в которой будет использоваться класс IntArray, должна включать этот заголовочный файл директивой препроцессора

#include.

По тому же самому соглашению функции-члены класса, определенные вне его описания, помещаются в файл с именем класса и расширением, обозначающим исходный текст С++ программы. Мы будем использовать расширение (напомним, что в разных системах вы можете встретиться с разными расширениями исходных текстов С++ программ) и назовем наш файл IntArray.C.

Упражнение 2.5

Ключевой особенностью класса С++ является разделение интерфейса и реализации. Интерфейс представляет собой набор операций (функций), выполняемых объектом; он определяет имя функции, возвращаемое значение и список параметров. Обычно пользователь не должен знать об объекте ничего, кроме его интерфейса. Реализация скрывает алгоритмы и данные, нужные объекту, и может меняться при развитии объекта,

С++ для начинающих

46

никак не затрагивая интерфейс. Попробуйте определить интерфейсы для одного из следующих классов (выберите любой):

(a)матрица

(b)булевское значение

(c)паспортные данные человека

(d)дата

(e)указатель

(f)точка

Упражнение 2.6

Попробуйте определить набор конструкторов, необходимых для класса, выбранного вами в предыдущем упражнении. Нужен ли деструктор для вашего класса? Помните, что на самом деле конструктор не создает объект: память под объект отводится до начала работы данной функции, и конструктор только производит определенные действия по инициализации объекта. Аналогично деструктор уничтожает не сам объект, а только те дополнительные ресурсы, которые могли быть выделены в результате работы конструктора или других функций-членов класса.

Упражнение 2.7

В предыдущих упражнениях вы практически полностью определили интерфейс выбранного вами класса. Попробуйте теперь написать программу, использующую ваш класс. Удобно ли пользоваться вашим интерфейсом? Не хочется ли Вам пересмотреть спецификацию? Сможете ли вы сделать это и одновременно сохранить совместимость со старой версией?

2.4. Объектно-ориентированный подход

Вспомним спецификацию нашего массива в предыдущем разделе. Мы говорили о том, что некоторым пользователям может понадобиться упорядоченный массив, в то время как большинство, скорее всего, удовлетворится и неупорядоченным. Если представить себе, что наш массив IntArray упорядочен, то реализация таких функций, как min(), max(), find(), должна отличаться от их реализации для массива неупорядоченного большей эффективностью. Вместе с тем, для поддержания массива в упорядоченном состоянии все прочие функции должны быть сильно усложнены.

Мы выбрали наиболее общий случай неупорядоченный массив. Но как же быть с теми немногочисленными пользователями, которым обязательно нужна функциональность массива упорядоченного? Мы должны специально для них создать другой вариант массива?

А вот и еще одна категория недовольных пользователей: их не удовлетворяют накладные расходы на проверку правильности индекса. Мы исходили из того, что корректность работы нашего класса превыше всего, и старались обезопасить себя от ошибочных ситуаций. Но возьмем, к примеру, разработчиков систем виртуальной реальности. Трехмерные изображения должны строиться с максимально возможной скоростью, быть может, за счет точности.

Да, мы можем удовлетворить и тех и других, создав для каждой группы пользователей свой, немного модернизированный, вариант IntArray. Более того, его даже не слишком трудно сделать, поскольку мы старались создать хорошую реализацию и необходимые

С++ для начинающих

47

изменения затронут совсем небольшие участки кода. Итак, копируем исходный текст,

//неупорядоченный массив без проверки границ индекса class IntArray { ... };

//неупорядоченный массив с проверкой границ индекса class IntArrayRC { ... };

//упорядоченный массив без проверки границ индекса

вносим необходимые изменения в нужные места и получаем три класса: class IntSortedArray { ... };

Подобное решение имеет следующие недостатки:

нам необходимо сопровождать три копии кода, различающиеся весьма незначительно. Хорошо бы выделить общие участки кода. Кроме упрощения сопровождения, это позволит использовать их впоследствии, если мы захотим создать еще один вариант массива, например упорядоченный с проверкой границ индекса;

если понадобится какая-то общая функция для обработки всех наших массивов, то нам придется написать три копии, поскольку типы ее параметров будут

void process_array (IntArray&); void process_array (IntArrayRC&);

различаться:

void process_array (IntSortedArray&);

хотя реализация этих функций может быть совершенно идентичной. Было бы лучше написать единственную функцию, которая могла бы работать не только со всеми нашими массивами, но и с теми их вариациями, какие мы, возможно, реализуем впоследствии.

Парадигма объектно-ориентированного программирования позволяет осуществить все эти пожелания. Механизм наследования обеспечивает пожелания из первого пункта. Если один класс является потомком другого (например, IntArrayRC потомок класса IntArray), то наследник имеет возможность пользоваться всеми данными и функциями- членами, определенными в классе-предке. То есть класс IntArrayRC может просто использовать всю основную функциональность, предоставляемую классом IntArray, и добавить только то, что нужно ему для обеспечения проверки границ индекса.

В С++ класс, свойства которого наследуются, называют также базовым классом, а класс- наследник производным классом, или подклассом базового. Класс и подкласс имеют общий интерфейс, предоставляемый базовым классом (т.к. подкласс имеет все функции- члены базового класса). Значит, программу, использующую только функции из этого общего интерфейса, не должен интересовать фактический тип объекта, с которым она работает, – базового ли типа этот объект или производного. В этом смысле общий интерфейс скрывает специфичные для подкласса детали. Отношения между классами и подклассами называются иерархией наследования классов. Вот как может выглядеть реализация функции swap(), которая меняет местами два указанных элемента массива. Первым параметром функции является ссылка на базовый класс IntArray:

С++ для начинающих

48

#include <IntArray.h>

void swap (IntArray &ia, int i, int j)

{

int temp ia[i]; ia[i] = ia[j]; ia[j] = temp;

}

//ниже идут обращения к функции swap: IntArray ia;

IntArrayRC iarc; IntSortedArray ias;

//правильно - ia имеет тип IntArray swap (ia,0,10);

//правильно - iarc является подклассом IntArray swap (iarc,0,10);

//правильно - ias является подклассом IntArray swap (ias,0,10);

//ошибка - string не является подклассом IntArray string str("Это не IntArray!");

swap (str,0,10);

Каждый из трех классов реализует операцию взятия индекса по-своему. Поэтому важно, чтобы внутри функции swap() вызывалась нужная операция взятия индекса. Так, если swap() вызвана для IntArrayRC:

swap (iarc,0,10);

то должна вызываться функция взятия индекса для объекта класса IntArrayRC, а для

swap (ias,0,10);

функция взятия индекса IntSortedArray. Именно это и обеспечивает механизм

виртуальных функций С++.

Давайте попробуем сделать наш класс IntArray базовым для иерархии подклассов. Что нужно изменить в его описании? Синтаксически совсем немного. Возможно, придется открыть для производных классов доступ к скрытым членам класса. Кроме того, те функции, которые мы собираемся сделать виртуальными, необходимо явно пометить специальным ключевым словом virtual. Основная же трудность состоит в таком изменении реализации базового класса, которая позволит ей лучше отвечать своей новой цели служить базой для целого семейства подклассов.

При простом объектном подходе можно выделить двух разработчиков конечной программы разработчик класса и пользователь класса (тот, кто использует данный класс в конечной программе), причем последний обращается только к открытому интерфейсу. Для такого случая достаточно двух уровней доступа к членам класса

открытого (public) и закрытого (private).

Если используется наследование, то к этим двум группам разработчиков добавляется третья, промежуточная. Производный класс может проектировать совсем не тот человек, который проектировал базовый, и для того чтобы реализовать класс-наследник, совсем не

С++ для начинающих

49

обязательно иметь доступ к реализации базового. И хотя такой доступ может потребоваться при проектировании подкласса, от конечного пользователя обоих классов эта часть по-прежнему должна быть закрыта. К двум уровням доступа добавляется третий, в некотором смысле промежуточный, – защищенный (protected). Члены класса, объявленные как защищенные, могут использоваться классами-потомками, но никем больше. (Закрытые члены класса недоступны даже для его потомков.)

class IntArray { public:

// конструкторы

explicit IntArray (int sz = DefaultArraySize); IntArray (int *array, int array_size); IntArray (const IntArray &rhs);

// виртуальный деструктор

virtual ~IntArray() { delete[] ia; }

// операции сравнения:

bool operator== (const IntArray&) const; bool operator!= (const IntArray&) const;

// операция присваивания:

IntArray& operator= (const IntArray&); int size() const { return _size; };

// мы убрали проверку индекса...

Вот как выглядит модифицированное описание класса IntArray:

virtual int& operator[](int index) { return ia[index]; }

virtual void sort();

virtual int min() const; virtual int max() const;

virtual int find (int value) const;

protected:

static const int DefaultArraySize = 12; void init (int sz; int *array);

int _size; int *ia;

}

Открытые функции-члены по-прежнему определяют интерфейс класса, как и в реализации из предыдущего раздела. Но теперь это интерфейс не только базового, но и всех производных от него подклассов.

Нужно решить, какие из членов, ранее объявленных как закрытые, сделать защищенными. Для нашего класса IntArray сделаем защищенными все оставшиеся члены.

Теперь нам необходимо определить, реализация каких функций-членов базового класса может меняться в подклассах. Такие функции мы объявим виртуальными. Как уже отмечалось выше, реализация операции взятия индекса будет отличаться по крайней мере для подкласса IntArrayRC. Реализация операторов сравнения и функции size() одинакова для всех подклассов, следовательно, они не будут виртуальными.

С++ для начинающих

50

При вызове невиртуальной функции компилятор определяет все необходимое еще на этапе компиляции. Если же он встречает вызов виртуальной функции, то не пытается сделать этого. Выбор нужной из набора виртуальных функций (разрешение вызова) происходит во время выполнения программы и основывается на типе объекта, из

void init (IntArray &ia)

которого она вызвана. Рассмотрим пример:

{

for (int ix=0; ix<ia.size(); ++ix) ia[ix] = ix;

}

Формальный параметр функции ia может быть ссылкой на IntArray, IntArrayRC или на IntSortedArray. Функция-член size() не является виртуальной и разрешается на этапе компиляции. А вот виртуальный оператор взятия индекса не может быть разрешен на данном этапе, поскольку реальный тип объекта, на который ссылается ia, в этот момент неизвестен.

(В главе 17 мы будем говорить о виртуальных функциях более подробно. Там мы рассмотрим также и накладные расходы, которые влечет за собой их использование.)

#ifndef IntArrayRC_H #define IntArrayRC_H

#include "IntArray.h"

class IntArrayRC : public IntArray { public:

IntArrayRC( int sz = DefaultArraySize ); IntArrayRC( const int *array, int array_size ); IntArrayRC( const IntArrayRC &rhs );

virtual int& operator[]( int ) const;

private:

void check_range( int ix );

};

Вот как выглядит определение производного класса IntArrayRC:

#endif

Этот текст мы поместим в заголовочный файл IntArrayRC.h. Обратите внимание на то, что в наш файл включен заголовочный файл IntArray.h.

В классе IntArrayRC мы должны реализовать только те особенности, которые отличают его от IntArray: класс IntArrayRC должен иметь свою собственную реализацию операции взятия индекса; функцию для проверки индекса и собственный набор конструкторов.

Все данные и функции-члены класса IntArray можно использовать в классе IntArrayRC так, как будто это его собственные члены. В этом и заключается смысл наследования.

Синтаксически наследование выражается строкой

class IntArrayRC : public IntArray

С++ для начинающих

51

Эта строка показывает, что класс IntArrayRC произведен от класса IntArray, другими словами, наследует ему. Ключевое слово public в данном контексте говорит о том, что производный класс сохраняет открытый интерфейс базового класса, то есть что все открытые функции базового класса остаются открытыми и в производном. Объект типа IntArrayRC может использоваться вместо объекта типа IntArray, как, например, в приведенном выше примере с функцией swap(). Таким образом, подкласс IntArrayRC это расширенная версия класса IntArray.

IntArrayRC::operator[]( int index )

{

check_range( index ); return _ia[ index ];

Вот как выглядит реализация операции взятия индекса:

}

#include <cassert>

inline void IntArrayRC::check_range(int index)

{

assert (index>=0 && index < _size);

Авот реализация встроенной функции check_range():

}

(Мы говорили о макросе assert() в разделе 1.3.)

Почему проверка индекса вынесена в отдельную функцию, а не выполняется прямо в теле оператора взятия индекса? Потому что, если мы когда-нибудь потом захотим изменить что-то в реализации проверки, например написать свою обработку ошибок, а не использовать assert(), это будет сделать проще.

В каком порядке активизируются конструкторы при создании производного класса? Первым вызывается конструктор базового класса, инициализирующий те члены, которые входят в базовый класс. Затем начинает работать конструктор производного класса, где мы должны проинициализировать только те члены, которые являются специфичными для подкласса, то есть отсутствуют в базовом классе.

Однако заметим, что в нашем производном классе IntArrayRC нет новых членов, представляющих данные. Значит ли это, что нам не нужно реализовывать конструкторы для него? Ведь вся работа по инициализации членов данных уже проделана конструкторами базового класса.

На самом деле конструкторы, как и деструкторы или операторы присваивания, не наследуются это правило языка С++. Кроме того, конструктор производного класса обеспечивает механизм передачи параметров конструктору базового класса. Рассмотрим

int ia[] = {0,1,1,2,3,5,8,13};

пример. Пусть мы хотим создать объект класса IntArrayRC следующим образом:

IntArrayRC iarc(ia,8);