
- •Волгодонский инженерно-технический институт - филиал нияу мифи
- •Линейная зависимость и независимость векторов линейного пространства.
- •Теоремы о линейно зависимых системах векторов линейного пространства.
- •Размерность и базис линейного пространства.
- •Теорема о разложении вектора по базису.
- •Координаты вектора в данном базисе. Операции с векторами в координатной форме.
- •Евклидово пространство.
- •Скалярное произведение векторов в ортонормированном базисе.
- •Декартовая система координат.
- •Координаты точки, радиус- вектор точки, произвольные вектора. Длина вектора.
- •Проекция вектора на ось.
- •Теоремы о проекциях.
- •Связь между координатами вектора и проекциями вектора на координатной оси.
- •Условие коллинеарности двух векторов.
- •Скалярное произведение векторов.
- •Свойства скалярного произведения.
- •Скалярное произведение координатных ортов.
- •Скалярное произведение в координатной форме. Возьмем два вектора в координатной форме
- •Приложения скалярного произведения.
- •Векторное произведение двух векторов.
- •Векторные произведения координатных ортов.
- •Векторное произведение в координатной форме.
- •Приложения векторного произведения.
- •Смешанное произведение трех векторов.
- •Смешанное произведение в координатной форме.
- •Приложения смешанного произведения.
- •Задание вектора в пространстве.
- •Аналитическая геометрия. Плоскость в пространстве.
- •Анализ общего уравнения.
- •Уравнение плоскости, проходящей через 3 точки.
- •Уравнение плоскости в отрезках.
- •Взаимное расположение двух плоскостей.
- •Прямая в пространстве.
- •Общее уравнение прямой в пространстве.
- •Переход от одних уравнений прямой к другим.
- •Взаимное расположение прямых в пространстве.
- •Взаимное расположение прямой и плоскости в пространстве.
- •Расстояния между различными объектами в пространстве.
- •Прямая на плоскости.
- •Взаимное расположение прямых на плоскости.
- •Кривые второго порядка.
- •Окружность.
- •Эллипс.
- •Гипербола.
- •Парабола.
- •Сфера в пространстве.
Координаты точки, радиус- вектор точки, произвольные вектора. Длина вектора.
Возьмем в пространстве произвольную точку М(х, у, z). Первая координата х – абсцисса ‒ это проекция т. М на ось ОХ. Вторая у – ордината – это проекция т. М на ось ОУ. Третья z – аппликата – на ось OZ.
М
α
N
Проекция т. М на α
Чтобы найти проекцию точки на прямую, нужно через точку провести плоскость перпендикулярно этой прямой.
Определение: Вектор, соединяющий начало координат т. О с произвольной точкой пространства называется радиус- вектор этой точки.
Радиус- вектор т. М – ОМ.
Найдем координаты радиус-вектора ОМ:
ОА= xi, ОВ= yj, ОС= zk.
OM= OP+ PM= OA+ OB+ OC= xi+ yj+ zk= (x, y, z).
Вывод: координаты радиус-вектора точки совпадают с координатами самой точки ОМ= (x, y, z).
Вектор
ОМ является диагональю параллелепипеда,
по свойству диагоналей d2=
a2+
b2+
c2
. Отсюда
следует, что │ОМ│2=
x2+
y2+
z2.
Извлекая, квадратный корень получаем
длину
.
Возьмем две произвольные точки т. А(x1, y1, z1) и т. В (x2, y2, z2). Соединим АВ.
Вспомогательные векторы: ОА= (x1, y1, z1), ОВ= (x2, y2, z2).
АВ= ОВ - ОА= (x2, y2, z2)- (x1, y1, z1)= (x2- x1, , y2- y1, z2- z1).
Вывод: чтобы найти координаты вектора нужно из координат конца вектора вычесть соответствующие координаты начала вектора.
АВ= (x2- x1, , y2- y1, z2- z1).
Пример. Даны 3 точки т. А(2,-1,3), т. В(4,0,1), т. С(-1,2,1). Найти АВ и его длину │АВ│, m= AB- 2BC.
Проекция вектора на ось.
Определение: Проекцией вектора на ось называется число, модуль которого равен проекции на эту ось отрезка, задающего вектор, причем число берется со знаком «+», если координата конца вектора больше координаты начала вектора, и со знаком «-», если координата начала больше координаты конца.
Через т. А и т. В проведем плоскости перпендикулярные оси l, и найдем точки пересечения плоскости с осью.
Перенесем вектор АВ в точку А1. А1В1(проекция)=АВ. Из прямоугольного треугольника следует, что проекция АВ на ось l будет равна:
│АВ│· cos φ= прl AB.
прl AB=│АВ│· cos φ, где φ - это угол между вектором и осью.
Возможны 3 случая:
1) φ- острый, прl AB> 0, т.к. cos φ> 0.
2) φ- тупой, прl AB< 0, т.к. cos φ< 0.
3) φ= 90°, прl AB= 0, т.к. cos φ= 0.
Теоремы о проекциях.
Теорема 1. прl(а + b)= прl a + прl b.
Теорема 2. прl (λа)= λ прl а.
Связь между координатами вектора и проекциями вектора на координатной оси.
прOY АВ= y1- y2, прOX АВ= x1- x2, прOZ АВ= z1- z2.
Вывод: проекции вектора на координатные оси совпадают с координатами вектора.
Условие коллинеарности двух векторов.
Возьмем два коллинеарных вектора а= (ах, ау, аz) ║b= (bx, by, bz).
b= λa.
В координатной форме:
Сравнивая
соответствующие координаты первые,
вторые и третьи получим:
.
Условие коллинеарности: Для коллинеарности двух векторов необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны.
Замечание: если одна из координат вектора равна 0, то у коллинеарного вектора соответствующая координата тоже равна 0.