Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хладагенты. Л.чтение..docx
Скачиваний:
30
Добавлен:
10.11.2019
Размер:
294.47 Кб
Скачать

3) Термоэлектрический эффект (эффект Пельтье).

При протекании постоянного тока через цепь, состоящую из двух разнородных материалов в местах контакта материалов (места спаев), поглощается либо выделяется (в зависимости от направления тока) некоторое количество теплоты QП (теплота Пельтье), пропорциональное силе тока QП = П ∙ I, где П - коэффициент Пельтье, зависящий от физических свойств материалов и температуры контакта. Наибольший эффект наблюдается при применении полупроводниковых материалов с разным характером проводимости.

Энергетическая эффективность термоэлектрических холодильных машин значительно ниже эффективности других типов машин, однако простота, надежность и отсутствие шума в ряде случаев определяют их применение на практике.

4) Расширение с совершением полезной работы.

Рабочее вещество может совершать полезную работу, если его расширять от давления P1 до давления P2 в специальной расширительной машине, которая называется детандером. Для расширения газов используют поршневые, центростремительные и осевые детандеры. Расширение газа с совершением полезной работы более эффективно, чем дросселирование.

5) Электрокалорический эффект охлаждения (эк).

Рабочей средой в ЭК- системе является класс диэлектриков со значительной зависимостью дипольного электрического момента Р от напряженности Е электрического поля, называемых сегнетоэлектриками.

Процесс охлаждения в такой системе осуществляют изотерми­ческой поляризацией сегнетоэлектрика путем наложения поля напряженностью E с отводом теплоты. В итоге энтропия снижается, и последующее изоэнтропное уменьшение Е определяет падение температуры DT. Преимуществом метода является то, что созда­ние электрического поля технически легко выполнимо; эффект может быть реализован в широком интервале температур от 0 до 300 К. Максимум эффекта находится вблизи точки Кюри; так, для КН2Р04 Ткюри = 122 К. Однако, DТ мало и не превы­шает 0,5—1 К при изменении Е в интервале 0—4 МВ/м. Предпо­лагают, что в ряде случаев такие системы могут быть эффективны.

6) термомагнитное охлаждение.

Основано на эффекте Эттингсхаузена (1886г.) и реализуется следующим образом. Вдоль полю­сов магнита помещают полупроводниковый стержень (брусок), к торцам которого подводят электрический ток. Взаимодействие электрического и магнитного полей приводит к возникновению в стержне раз­ности температур вдоль вертикальной оси, перпендикулярной к направлению тока и магнитного поля. Эффект охлаждения DT составляет 10 К и более.

7) Намагничивание сверхпроводников.

Переход металла из нор­мального в сверхпроводящее состояние сопровождается уменьше­нием энтропии, так как при этом упорядочивается электронная структура . Очевидно, что обратный процесс — сниже­ние упорядоченности — приведет к погло­щению теплоты. Такую систему можно использовать для охлаж­дения, реализуемого следующим образом. Образец предварительно охлаждают до температуры Tн, которая ниже температуры пере­хода в сверхпроводящее состояние Тc. После этого образец адиа­батически изолируют и накладывают внешнее магнитное поле напряженностью Н, что приводит к его изоэнтропному переходу в нормальное состояние. Так как теплота поглощается от массы самого образца, то он охлаждается на DT = Тн — Тк.

Метод можно осуществлять только при Т < Тс, т. е. в интервале 0—20 К; однако, его эффективность мала, так как теплоемкость твердых тел при таких температурах очень низкая.