
- •Предисловие
- •1. Введение
- •Общие понятия о моделировании
- •2.1. Принцип системного подхода в моделировании
- •2.2. Общая характеристика проблемы моделирования
- •2.3. Классификация видов моделирования
- •3. Простейшие модели систем
- •3.1. Модель маятника
- •3.2. Модель движения по быстрейшему пути с «отражением».
- •3.3. Модель популяций Мальтуса
- •3.4. Модель движения одноступенчатой космической ракеты
- •3.5. Простейшая модель изменения зарплаты и занятости
- •3.6. Макромодель экономического роста
- •3.7. Взаимодействие двух биологических систем (модель «хищник - жертва»)
- •4.2. Простейший пример имитационного моделирования (модель работы кассы)
- •4.3. Понятие о методе статистических испытаний
- •4.4. Об имитационном моделировании случайных факторов Моделирование случайных событий
- •4.5. Имитационная модель системы массового обслуживания
- •Математическая постановка задачи
- •Пример решения задачи
- •5.2. Модель источников формирования входного пассажиропотока строящейся станции Петербургского метрополитена «Волковская».
- •5.3. Моделирование влияния повышения квалификации машинистов локомотивного депо на количество брака в их работе
- •5.4. Моделирование распознавания технической железнодорожной документации
- •Введение
- •Постановка задачи
- •Вектор значимых признаков символа
- •Алгоритмы построения скелета символа
- •Модель процесса распознавания символов для технологических карт систем железнодорожной автоматики
- •Заключение
- •A.Модель нагрузки на руководителя среднего звена управления
- •Введение
- •1. Обобщённая имитационная модель работы руководителя среднего звена управления при разных нагрузках
- •1.1. Описание входных данных модели
- •1.2. Описание алгоритма работы руководителя
- •1.3. Анализ результатов работы модели
- •1.4 Выводы
- •2.Модель взаимоотношений руководителя с подчиненными
- •2.1. Общее описание математической модели
- •B.Анализ результатов моделирования
- •Моделирование оптимального управления поездами метрополитена
- •Моделирование функционирования тональных рельсовых путей
- •Формирование напряжения в путевом генераторе:
- •Моделирование обработки сигнала пг в путевом фильтре:
- •Моделирование прохождения сигнала по рельсовой линии (рл):
- •Моделирование обработки сигнала в путевом приемнике
- •480 Гц. При напряжении на входе с несущей частотой 480 Гц.
- •Обработка сигнала с выхода фильтра модулирующей частоты
- •Литература
Общие понятия о моделировании
2.1. Принцип системного подхода в моделировании
В настоящее время при исследовании больших и сверхбольших систем со сложной структурой получил развитие системный подход, который отличается от классического (или индуктивного) подхода. Классический или индуктивный подход рассматривает объект (систему) путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, исследуемых раздельно (элементы модели исследуются раздельно, а затем модель формируется из этих элементов). В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.
Рассмотрим этот вопрос более детально, заодно, остановившись на терминах и понятиях, которые имеют место в моделировании.
Система (объект) S – целенаправленное множество взаимосвязанных элементов любой природы. Внешняя среда E - множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием.
При системном подходе к моделированию необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально существующий или проектируемый объект создается модель под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель M. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.
Важным для системного подхода является определение структуры системы – совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, то – есть, когда изучаются функции системы.
Проявление функций системы во времени S(t), т. е. функционирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.
Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели M на основе классического (индуктивного) подхода представлен на Рис. 2.1. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельным совокупностям исходных данных Д ставятся цели моделирования отдельных сторон функционирования системы, на базе этих целей формируются компоненты К будущей модели. Совокупность компонент объединяется в модель М.
Рис. 2.1.1. Схема классического подхода в моделировании
Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств.
С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т. е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность поставленных задач, но и создавать систему, являющуюся составной частью метасистемы (или подстраиваться под уже существующую метасистеу). Например, если ставится задача проектирования АСУ (автоматизированной системы управления) железнодорожной станции, то с позиций системного подхода нельзя забывать о том, что эта система является составной частью АСУ отделения дороги, дороги и отраслевой АСУ.
В основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение начинается с главного – формулировки цели функционирования. Процесс синтеза модели М на базе системного подхода условно представлен на Рис. 2.2. На основе исходных данных Д, которые известны из анализа внешней среды, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, Элементы Э и осуществляется наиболее сложный этап синтеза – выбор В составляющих системы, для чего используются специальные критерии выбора КВ.
М
Рис. 2.1.2. Схема системного подхода в моделировании
При моделировании необходимо обеспечить максимальную эффективность модели системы: это, как правило, разность между показателями ценности использования модели и затратами на разработку и создание модели.