Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛЗ. ЧАСТЬ 3.doc
Скачиваний:
15
Добавлен:
10.11.2019
Размер:
976.9 Кб
Скачать

Задания

  1. Разработать схемы алгоритмов решения обыкновенного дифференциального уравнения методами Эйлера и Рунге-Кутта IV порядка точности.

  2. В среде Delphi создать приложение для решения дифференциальных уравнений, приведенных в табл.5 (в соответствии со своим вариантом) методами Эйлера и Рунге-Кутта IV порядка.

  3. Решить дифференциальное уравнение (в соответствии со своим вариантом) с помощью MathCad.

  4. Вычислить погрешности методов решения дифференциальных уравнений.

  5. На основании результатов п.п. 2, 3, 4 провести сравнительный анализ методов численного решения дифференциальных уравнений.

Таблица 5

Вариант

Уравнение

Начальные

данные

Отрезок

интегрирования

Контрольные вопросы

1. Что является решением дифференциального уравнения?

2. Почему для решения дифференциального уравнения необходимо иметь начальные условия?

3. Зачем дифференциальное уравнение преобразуют к виду y'=f(x,y)?

4. Почему метод Рунге-Кутта IV порядка точнее метода Эйлера?

5. За счет чего возникает погрешность в методе Эйлера? Как ее уменьшить?

6. Как выбирается шаг интегрирования в методе Рунге-Кутта IV порядка точности?

Литература

Основная литература.

  1. Алексеев В.Е. Вычислительная техника и программирование. Практикум по программированию / В.Е. Алексеев, А.С. Ваулин, Г.Б. Петрова: Под редакцией А.В. Петрова – М.: Высш. шк., 1991.

  2. Воробьева Г.Н., Данилова А.Н. Практикум по вычислительной математике, Уч. пос. для техн., М: Высш. шк., 1990.

  3. Волков Е.А. Численные методы: Уч. пос. для ВУЗов. М: Наука, 1987.

  4. Вычислительная техника и программирование: Учебн. Для техн. ВУЗов/А.В. Петров, В.Е. Алексеев, А.С. Ваулин и др.; Под ред. А.В. Петрова. – М.: Высш. Шк.,1990.

  5. Гусак А.А. Математический анализ и дифференциальные уравнения: справочное пособие / Изд. 2-е, - Мн.: «Тетрасистем», 2001

  6. Дьяконов В. MathCad 2001: Специальный справочник. – СПб.: Питер, 2002.

  7. Кренкель Т.Э. и др. Персональные ЭВМ в инженерной практике: Справочник / Т.Э. Кренкель, А.Г. Кочан, А.М. Тараторин. –М.:Радио и связь, 1989.

  8. Методические указания к выполнению курсовой работы «Вычислительная техника, программирование и математическое моделирование» для студентов -заочников машиностроительных специальностей. БГПА, Мн. – 1994.

  9. Справочное пособие по приближенным методам решения задач высшей математики. \ Л. И. Бородич, А.И. Герасимович, М: Высш. шк., 1986.

Дополнительная литература.

  1. Задачи и упражнения по математическому анализу. Под ред. Б. П. Демидовича. – М.: Наука, 1978. – 480 с.

  2. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. – М.: Наука, 1984.

  3. Фурунжиев Р. И., Бабушкин Ф. М., Варавко В. В. Применение математических методов и ЭВМ: Практикум: Учеб. пособие для вузов. – Мн.: Выш. шк., 1988.

  4. Туркина Е.П. Математическая обработка данных с помощью пакета MathCad: Сб. лаб. работ. Для ст. эк. спец. – Мн.: БГЭУ, 2002.