
- •Розділ і.
- •§1. Метод координат.
- •1.1. Декартова система координат. Координати точки.
- •1.2. Відстань між двома точками. Рівняння кола та сфери.
- •1.3. Ділення відрізка у даному відношенні.
- •1.4. Пряма лінія на площині.
- •1.5. Площина в просторі.
- •1.6. Пряма лінія в просторі.
- •1.7. „За числами бачити фігури”.
- •§2. Перетин прямих ліній і площин.
- •2.1. Знаходження точки перетину двох прямих ліній на площині.
- •2.2. Знаходження точки перетину трьох площин у просторі.
- •Нехай маємо три площини
- •2.3. Перетин двох прямих на площині; одна з прямих задана канонічним рівнянням.
- •2.4. Знаходження точки перетину прямої і площини.
- •§3. Вступ до векторної алгебри.
- •3.1. Поняття вільного вектора.
- •3.2. Арифметичні операції над векторами.
- •3.3. Координатне подання арифметичних операцій над векторами.
- •3.4. Поняття одиничного декартового базису. Розкладення векторів за базисом.
- •3.5. Скалярний добуток векторів, його обчислення і застосування.
- •3.6. Точки та їх радіус-вектори.
- •§4. Розв’язання задач лінійного програмування малої
- •4.1. Математична модель задачі лінійного програмування.
- •4.2. Розв’язання злп.
- •§5. Векторний добуток векторів, його обчислення та застосування.
- •5.1. Поняття векторного добутку.
- •5.2. Властивості векторного добутку.
- •5.3. Координатне подання векторного добутку.
- •5.4. Координатне подання векторного добутку в детермінантній формі.
- •5.5. Контрольна перевірка правильності обчислення векторного добутку.
- •5.6. Застосування векторного добутку.
- •§6. Змішаний добуток векторів, його обчислення та застосування.
- •6.1. Поняття змішаного добутку.
- •6.2. Властивості змішаного добутку.
- •6.3. Координатне подання змішаного добутку.
- •6.4. Застосування змішаного добутку.
- •§7. Метричні характеристики і взаємне розташування геометричних об’єктів.
- •7.1. Точки і прямі лінії на площині.
- •7.2. Точки і площини в просторі.
- •7.3. Точки і прямі в просторі.
- •7.4. Пряма і площина в просторі.
- •7.5. Площі.
- •7.7. Дві прямі в просторі.
2.2. Знаходження точки перетину трьох площин у просторі.
Будь-яка площина в просторі може бути задана загальним лінійним рівнянням з трьома змінними
.
Нехай маємо три площини
,
,
.
Знаходження точки перетину площин зводиться до розв’язання СЛР, складеної з рівнянь цих площин, тобто квадратної СЛР з трьох рівнянь з трьома змінними
Далі ми будемо робити аналогічні перетворення, як і для СЛР 2х2, тобто такі, які виключають з рівнянь певну змінну. В результаті будуть отримані формули Крамера і сформульоване правило Крамера, які цілком аналогічні формулам і правилу Крамера для СЛР 2х2. Перед виконанням перетворень перенесемо вільні члени в праву частину рівнянь, перепозначивши їх (для позбавлення знаків „-”) іншими буквами:
За допомогою 1-го рівняння виключаємо змінну х з 2-го і 3-го рівнянь перетвореннями:
Маємо:
Друге і третє рівняння не містять змінної х (точніше х , входить у ці рівняння з коефіцієнтом 0) і утворюють СЛР 2х2 від у і z , до якої можна застосувати формули Крамера:
,
.
Розглянемо вираз у знаменниках дробів. Це визначник 2-го порядку, розкриваємо його за означенням, отримуємо:
дужками виділені доданки, які взаємно знищуються; маємо:
.
Так само розкриваємо
визначники
і
– в чисельниках.
Вправа.
Отримати
розгорнуті вирази для
і
і переконатись у вірності виразів:
,
.
Маємо:
,
,
де
,
,
.
Вправа. Підставити отримані вирази для y та z у перше рівняння СЛР 3х3 , виконати необхідні перетворення й переконатись у вірності виразу:
,
де
.
Вирази для
мають однакову алгебраїчну структуру,
вони отримані за однією й тією самою
схемою, причому складаються з елементів
квадратних таблиць – квадратних
матриць 3-го порядку:
,
,
,
.
Бачимо, що кожний вираз є алгебраїчною сумою шести доданків; кожний доданок є добутком трьох елементів матриці; три добутки беруться з їх знаками, три – з протилежними; які саме елементи утворюють добутки, і які добутки з якими знаками беруться, ілюструє така схема:
Означення (визначника 3-го порядку).
Визначником (або детермінантом) 3-го порядку, тобто визначником квадратної матриці 3х3
,
позначення:
або
,
називається число, обчислене за формулою
.
Нехай маємо квадратну СЛР розмірів 3х3, тобто СЛР, що складається з 3-х рівнянь від 3-х змінних
Визначник, складений з коефіцієнтів при невідомих, називається основним визначником СЛР, визначники, отримані заміною в основному визначнику певного стовпчика на стовпчик вільних членів, називаються допоміжними визначниками СЛР.
Проведені міркування і виконані перетворення є доведенням теореми:
Теорема Крамера (для СЛР 3х3). Якщо основний визначник СЛР відмінний від нуля, то СЛР має, і до того ж єдиний, розв’язок, який можна обчислити за формулами Крамера:
,
де
,
,
,
.
Приклад. Знайдемо точку перетину площин
,
,
.
Складаємо СЛР, вільні члени одразу переносимо в праві частини рівнянь:
З’ясовуємо можливість застосування правила Крамера (основний визначник СЛР має бути відмінний від нуля):
правило Крамера
можна застосувати.
Обчислюємо допоміжні визначники:
,
,
.
За формулами Крамера :
,
,
.
Перевірка (підставляємо знайдені значення змінних в кожне рівняння) :
Перевірка підтвердила
правильність виконаних обчислень, отже
точкою перетину площин є точка
.