
- •Учебно-методические материалы Теоретический курс Тема 1. Задачи теории игр в экономике Математические модели игр
- •Основные понятия
- •Классификация игр
- •Тема 2. Математические модели игр
- •Тема 3. Антагонистические игры Максиминные и минимаксные стратегии. Нижняя и верхняя цены игры в чистых стратегия
- •Тема 4. Решение антагонистической игры с седловой точкой
- •Тема 5. Смешанные стратегии
- •Тема 6. Функции выигрыша в смешанных стратегиях
- •Тема 7. Решение игры в смешанных стратегиях
- •Тема 8. Критерии и свойства оптимальных стратегий
- •Тема 9. Принцип доминирования
- •Тема 10. Игры 2хп
- •Тема 11. Игры
- •Тема 12. Игры и их решение с помощью линейного программирования
- •Тема 13. Игры в условиях риска
- •Тема 14. Принятие решение в условиях риска на основе модели игры с природой
- •Тема 15. Игры в условиях неопределенности. Критерий принятия решений
- •Тема 16. Позиционные игры Понятие позиционной игры и ее нормальной формы
- •Графическое представление позиционной игры
- •Определение позиционной игры
- •Позиционные игры с полной информацией
- •Позиционные игры с идеальной памятью
Тема 12. Игры и их решение с помощью линейного программирования
Между матричными играми и линейным программированием существует взаимосвязь, состоящая в том, что, с одной стороны, решение любой матричной игры можно свести к решению пары двойственных друг другу задач линейного программирования специалыуэго вида, а с другой стороны, наоборот, любая задача линейного программирования, у которой существует решение, может быть сведена к матричной игре специального вида. Таким образом, в этом смысле теория линейного программирования эквивалентна теории матричных игр.
Сформулируем теорему, устанавливающую сведение решения любой матричной игры к решению пары двойственных задач линейного программирования специального вида. При этом будем предполагать, что все элементы матрицы игры
|
|
… |
|
|
|
… |
|
… |
… |
… |
… |
|
|
… |
|
положительны:
(12.1)
Условие (12.1) не умаляет общности, поскольку матрица с любыми элементами может быть приведена к матрице с положительными элементами аффинным преобразованием
где
,
по которому к каждому элементу исходной
матрицы прибавляется достаточно большое
положительное число
,
например, большее максимального модуля
неположительных элементов матрицы; при
этом оптимальные стратегии остаются
прежними, а цена игры увеличивается на
прибавленную константу
.
Теорема 20.1. Решение матричной игры тхп с матрицей А, элементы которой удовлетворяют условию (12.1), эквивалентно решению следующей пары двойственных друг другу стандартных задач линейного программирования:
найти
,
при ограничениях
(12.2)
найти
при ограничениях
(12.3)
Точнее говоря,
если
-
оптимальное решение задачи
(12.2),
- оптимальное
решение задачи (20.3),
то
(12.4)
цена игры с матрицей А,
(12.5)
оптимальная стратегия игрока А,
оптимальная стратегия игрока В.
Пример. Необходимо найти решение матричной игры 3x3 с матрицей
B A |
|
|
|
|
7 |
2 |
9 |
|
2 |
9 |
0 |
|
9 |
0 |
11 |
Чтобы сделать все
неотрицательными, прибавим ко всем
элементам матрицы
.
Получим матрицу:
B A |
|
|
|
|
7 |
2 |
9 |
|
2 |
9 |
0 |
|
9 |
0 |
11 |
При этой цена игры увеличится на 5, а решение не изменится.
Определим оптимальную
стратегию
.
Условия
(12.3) имеют вид:
(12.6)
где
Чтобы избавиться
от знаков неравенства, введем фиктивные
переменные
;
условия (12.6) запишутся в виде:
(12.7)
Линейная форма Ф имеет вид:
и должна быть сделана как можно меньше.
Если
все три стратегии
В являются
«полезными», то все три фиктивные
переменные
обратятся в нуль (т. е. выигрыш, равный
цене игры
,
будет достигаться при каждой стратегии
).
Но мы пока не имеем оснований утверждать,
что все три стратегии являются «полезными».
Чтобы проверить это. попытаемся выразить
форму Ф через фиктивные переменные
и посмотрим, добьемся ли мы, полагая их
рапными нулю, минимума формы. Для этого
разрешим уравнения (5.7) относительно
переменных
(т. е. выразим
через фиктивные переменные
):
(12.8)
Складывая получим:
(12.9)
В
выражении (12.9) коэффициенты при всех
положительны; значит, любое увеличение
сверх нуля может привести только к
увеличению формы Ф, а мы хотим, чтобы
она была минимальна. Следовательно,
значениями
обращающими форму (12.9) в минимум, являются
Подставляя
их в формулу (12.9), находим минимальное
значение формы Ф:
,
откуда цена игры
.
Подставляя нулевые значения в формулы (5.8), находим:
,
или, умножая их на ,
.
Таким образом, оптимальная стратегия А найдена:
,
т. е. мы должны в одной четверти всех случаев писать цифру 1, в половине случаев 2 и в остальной четверти случаев 3.
Зная цену игры , можно уже известными способами найти оптимальную стратегию противника
.
Для этого воспользуемся нашими любыми двумя «полезными» стратегиями (например, и ) и напишем уравнения:
откуда
.Оптимальная
стратегия противника будет такой же,
как наша:
.
Теперь
вернемся к первоначальной (не
преобразованной) игре. Для этого нужно
только от цены игры
отнять величину
,
прибавленную к элементам матрицы.
Получим цену исходной игры
.
Следовательно, оптимальные стратегии
обеих сторон обеспечивают средний
выигрыш, равный нулю; игра в одинаковой
мере выгодна или невыгодна для обеих
сторон.