
- •1.1. Аудиомагнитофоны и их классификация
- •1.2. Основные понятия и определения
- •1.4. Лентопротяжные механизмы
- •1.6. Основные параметры аудиомагнитофона
- •2.1. Нормы на ачх
- •2.2. Ачх идеального тзв
- •2.3. Ачх реального тзв
- •По известной амплитудно-волновой характеристике можно определить и ачх тзв. Подставляя (1.5) в (1.2), вычислим эдс на один виток гу:
- •Из (1.6) видно, что фаза сигнала сдвинулась на /2, а коэффициент передачи тзв (без учета дефектов мл и гу) будет равен
- •2.4. Влияние на ачх тзв дефектов и конечных размеров головки
- •2.5. Корректирование ачх тзв и результирующая ачх кзв
- •3.1. Запись без подмагничивания
- •3.2. Запись с подмагничиванием постоянным током
- •3.4. Использование шумоподавления в магнитной записи
- •3.5. Принцип действия динамических шумоподавителей
- •3.6. Принцип действия шумоподавителей Dolby
- •4.1. Магнитные ленты
- •4.2. Возможности современных амф
- •4.3. Аудиозапись на немагнитных носителях
- •1.1. Общие сведения о магнитной видеозаписи
- •1.2. Особенности записи видеосигнала на магнитную ленту
- •Как преодолеть эти проблемы?
- •1.3. Классификация бытовых видеомагнитофонов
- •1.4. Распространенные форматы записи
- •3.1. Принцип работы сар бвг
- •3.2. Принцип работы сар вв
- •3.3. Принцип работы сат
- •4.1. Цифровой стандарт d-vhs
- •4.2. Сжатие видеоинформации
- •1.1. Изготовление компакт-дисков
- •1.2. Структура компакт-диска и дорожки записи
- •1.3. Структурная схема проигрывателя компакт-дисков
- •1.4. Основные параметры лазерных проигрывателей компакт-дисков
- •1.5. Измерение и контроль параметров, ремонт и обслуживание лазерных проигрывателей компакт-дисков
- •2.1. Использование лазера в устройстве звукоснимателя
- •2.2. Оптическая считывающая система
- •3.L. Сервосистема управления вращением компакт-диска
- •3.2. Сервосистема позиционирования лазерного звукоснимателя
- •3.3. Сервосистема автоматической фокусировки лазерного луча
- •3.5. Антиударные схемы в проигрывателях компакт-дисков
- •4.1. Принципы записи с использованием импульсно-кодовой модуляции
- •4.2. Структура записываемой информации
- •5.1. Демодуляция efm сигналов
- •5.2. Circ-декодер
- •5.3. Скоростная выборка сигнала
- •5.4. Демультиплексирование и цифро-аналоговая обработка сигналов
- •5.5. Обработка данных субкода
- •6.1. Единый мировой стандарт - dvd
- •6.2. Стандарты и спецификации. Области применения dvd
- •6.3. Стандарты записи на dvd
2.3. Ачх реального тзв
Потери записи и воспроизведения можно разделить на два вида: частотные, которые зависят от частоты и не зависят от длины волны записи, и волновые, которые зависят только от длины волны записи. Примером частотных потерь являются потери, возникающие на высоких частотах, вызванные расходом энергии на вихревые токи в сердечнике головки. В работе рассматриваются лишь волновые потери.
На величину потерь в ТЗВ оказывают влияние параметры ГУ, МЛ и ЛПМ. При анализе прохождения сигналов по ТЗВ рассматривают его идеализированную модель (рис.1.5).
П
од
идеализированной понимают такую
модель реального ТЗВ, которая предполагает
отсутствие статических дефектов
и технологических допусков на параметры
ГУ и ее расположение относительно
МЛ. МЛ с рабочим слоем толщиной d,
с магнитной проницаемостью М
= 1 намагничивается
однородно по толщине гармоническим
сигналом с ГУ, работающей в режиме
записи. ГУ имеет зазор шириной 2
и расположена на расстоянии а
от МЛ. Рабочая поверхность ГУ имеет
бесконечную протяженность вдоль оси
движения ленты x.
Проницаемость сердечника ГУ М
= .
ТЗВ можно рассматривать как линейную систему и для анализа использовать методы теории линейных цепей. Входное воздействие – остаточный магнитный поток дорожки Фr(х), а отклик – поток в сердечнике ГУ, работающей в режиме воспроизведения
,
(1.3)
где
– функция чувствительности ГУ; l
– координата вдоль направления записи.
Выражение (1.3) представляет собой аналог интеграла Дюамеля для ТЗВ. Физический смысл функции заключается в том, что она показывает какова в каждой точке пространства степень связи между потоком в сердечнике ГУ и намагниченностью МЛ.
Для ГУ кольцевого типа при ширине рабочего зазора 2 и расстоянии а до МЛ:
.
(1.4)
После подстановки (1.4) в (1.3) поток в ГУ запишется как
,
(1.5)
где
- волновая плотность записи.
П
оток
в ГУ в
раз меньше потока в МЛ. Указанные
коэффициенты зависят от длины волны,
поэтому определяемые ими потери
называются волновыми. Максимальное
значение каждого коэффициента равно
единице. Коэффициенты характеризуют
различия в уровнях при воспроизведении
сигналов с различной длиной волны и
определяются конструктивными факторами:
- коэффициент щелевых потерь, Ка
– коэффициент контактных потерь,
Кd
– коэффициент слойных потерь. Зависимость
указанных и результирующего Kрез
коэффициентов от длины волны показана
на рис.1.6.
Щелевые потери (рис.1.6,а) возникают из-за того, что ширина рабочего зазора ГУ соизмерима с длиной волны записи. В точке первого нуля 2= ширина рабочего зазора равна длине волны записи и сигнал не будет воспроизводиться, т.к. разность магнитных потенциалов между полюсами ГУ равна нулю. Обычно в аудиомагнитофонах используется диапазон длин волн записи min>2, т.е. рабочим диапазоном является участок левее первого нуля.
Контактные потери (рис.1.6,б) вызваны тем, что МЛ не полностью прижата к ГУ, и только часть магнитного потока замыкается через сердечник и создает полезный эффект. Другая его часть замыкается в пространстве между ГУ и МЛ и теряется. Контактные потери определяют экспоненциальное уменьшение уровня сигнала при укорочении длины волны записи. Контактные потери выражают в децибелах Ка = 54,6 а/. При а = отдача падает на 54,6 дБ (почти в 500 раз), что практически приводит к пропаданию воспроизводимого сигнала.
Слойные потери (рис.1.6,в) тем больше, чем толще рабочий ферромагнитный слой ленты d. При d = 5 слойные потери снижают отдачу более чем в 30 раз. Однако с уменьшением толщины рабочего слоя уменьшается и абсолютная отдача. Лента имеет определенную толщину слоя. Уменьшение слойных потерь достигается применением МЛ с тонким рабочим слоем и магнитным материалом с большой остаточной намагниченностью.
Результирующий коэффициент (рис.1.6,г) имеет вид спадающей кривой без периодического чередования нулей, так как в современных аудиомагнитофонах контактные и слойные потери больше, чем щелевые.