- •К.А.Джафаров Теория вероятностей и Математическая Статистика
- •Общие сведения
- •2. Рабочая программа оглавление
- •Общая характеристика направления
- •521600 Экономика
- •2.Требования к основной образовательной программе подготовки бакалавра по направлению 521600 «экономика»
- •3.Требования к обязательному минимуму содержания основной образовательной программы подготовки бакалавра по направлению 521600 «экономика»(раздел общие математические дисциплины)
- •Теория вероятностей и математическая статистика
- •II. Цели и задачи дисциплины.
- •III. Принципы построения курса
- •IV. Структура и содержание курса Лекции – 68 часов Практические занятия – 51 час
- •Модуль 1. Случайные величины и их вероятности
- •Модуль 4. Цепи Маркова
- •Модуль 6. Оценивание неизвестных параметров
- •Модуль 7. Проверка статистических гипотез
- •III семестр (34 часа)
- •1. Случайные величины и их вероятности (12 часов)
- •IV cеместр (34 часа)
- •4. Цепи Маркова (6 часов)
- •5. Основные понятия математической статистики (4 часа)
- •6. Оценивание неизвестных параметров (8 часов)
- •7. Проверка статистических гипотез (8 часов)
- •8. Примеры статистических методов обработки данных (8 часов)
- •V. Деятельность студентов. Практические занятия
- •III семестр (17 часов)
- •1. Случайные величины и их вероятности (6 часов)
- •IV cеместр (34 часа)
- •4. Цепи Маркова (6 часов)
- •5. Основные понятия математической статистики (4 часа)
- •6. Оценивание неизвестных параметров (8 часов)
- •7. Проверка статистических гипотез (8 часов)
- •8. Примеры статистических методов обработки данных (8 часов)
- •Контрольные мероприятия
- •VI. Самостоятельная работа студента
- •Литература
- •Дополнительная литература
- •Приложение. Вариант контрольной работы № 1
- •Вариант контрольной работы № 2
- •Глава 1 события и их вероятности
- •1.1. Аксиомы теории вероятностей. Вероятностные пространства
- •Случайные события. Операции над ними
- •1.1.2. Вероятности
- •1.1.3. Свойства вероятностей
- •Задачи к 1.1
- •1.2. Схема равновозможных исходов
- •1.2.1. Элементы комбинаторики
- •1.2.2. Классическая вероятность
- •1.2.3. Геометрическая вероятность
- •1.2.4. Гипергеометрическое распределение
- •Задачи к 1.2
- •Условные вероятности. Формула полной вероятности. Формулы Байеса
- •1.3.1. Условные вероятности
- •1.3.2. Формула полной вероятности
- •1.3.3. Формулы Байеса
- •Задачи к 1.3
- •1.4. Независимость случайных событий
- •1.4.1. Независимость двух событий
- •1.4.2. Независимость нескольких событий
- •Задачи к 1.4
- •1.5. Дополнительные задачи к Главе 1
- •Глава 2 случайные величины и их распределения
- •2.1. Случайные величины со значениями в 1
- •2.1.1. Случайные величины
- •2.1.2. Функция распределения
- •2.1.3. Свойства функции распределения
- •Задачи к 2.1
- •2.2. Дискретный и непрерывный типы распределений
- •2.2.1. Дискретная случайная величина
- •2.2.2. Непрерывная случайная величина
- •2.2.3. Примеры случайных величин
- •Задачи к 2.2
- •2.3. Функция от случайной величины
- •Задачи к 2.3
- •2.4. Случайные величины со значениями в n.
- •2.4.1. Случайные векторы
- •2.4.2. Дискретные и непрерывные двумерные случайные величины
- •2.4.3. Независимость случайных величин
- •Задачи к 2.4
2.Требования к основной образовательной программе подготовки бакалавра по направлению 521600 «экономика»
Основная образовательная программа подготовки бакалавра формируется из дисциплин федерального компонента, дисциплин регионального (вузовского) компонента, дисциплин по выбору студента, а также факультативных дисциплин. Дисциплины и курсы по выбору студента в каждом цикле должны содержательно дополнять дисциплины, указанные в федеральном компоненте цикла.
3.Требования к обязательному минимуму содержания основной образовательной программы подготовки бакалавра по направлению 521600 «экономика»(раздел общие математические дисциплины)
ЕН.Ф.03. МАТЕМАТИКА
Теория вероятностей и математическая статистика
Сущность и условия применимости теории вероятностей. Основные понятия теории вероятностей. Вероятностное пространство. Случайные величины и способы их описания. Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях. Закон распределения вероятностей для функций от известных случайных величин. Неравенство Чебышева. Закон больших чисел и его следствие. Особая роль нормального распределения: центральная предельная теорема. Цепи Маркова и их использование в моделировании социально-экономических процессов. Статистическое оценивание и проверка гипотез, статистические методы обработки экспериментальных данных.
II. Цели и задачи дисциплины.
Курс «Теория вероятностей и математическая статистика» является базовым для экономических специальностей. Важнейшими свойствами социально-экономических систем являются случайность и неопределенность в развитии экономических явлений, массовый характер экономических явлений и процессов. Поэтому экономические явления и процессы носят в основном вероятностный характер, и для их изучения необходимо применение экономико-математических моделей на базе теории вероятностей и математической статистики.
Исходя из вышесказанного, можно сформулировать цели данного курса:
А) научить студентов-экономистов при исследовании социально-экономических явлений учесть не только основные факторы, но и множество второстепенных факторов, приводящих к случайным возмущениям и искажениям результата.
Б) научить студентов при исследовании экономических явлений пользоваться специальными – вероятностными методами.
В) изучить закономерности массовых случайных явлений, прогнозировать их характеристики, влиять на ход этих явлений, контролировать их, ограничивать область действия случайности
III. Принципы построения курса
В основу курса «Теория вероятностей и математическая статистика» положены следующие принципы:
Курс входит в число дисциплин, включенных в учебный план согласно ГОС ВПО.
При изучении студентами курса руководящим должны быть следующие требования ГОСа к уровню подготовки выпускника по направлению 521600 «Экономика»:
Бакалавр должен знать принципы принятия и реализации экономических и управленческих решений.
Бакалавр должен уметь выявлять проблемы экономического характера при анализе конкретных ситуаций, предлагать способы их решения и оценивать ожидаемые результаты;
Бакалавр должен уметь использовать основные методы экономического анализа статистической, бухгалтерской и финансовой информации.
