- •080105.65 ‑ Финансы и кредит;
- •080107.65 – Налоги и налогообложение;
- •080103.65 ‑ Национальная экономика
- •Введение 5
- •Введение
- •Глава 1. Корреляционный анализ §1.1. Корреляционный анализ в сильных шкалах
- •§1.2. Корреляционный анализ в слабых шкалах
- •Глава 2. Парный регрессионный анализ §2.1. Линейная модель парной регрессии
- •§2.2. Парный линейный регрессионный анализ в ms Excel
- •2.2.1. Добавление линейного тренда
- •2.2.2. Интерпретация линии тренда
- •2.2.3. Усовершенствование линии тренда
- •2.2.4. Инструмент анализа Регрессия
- •2.2.5. Интерпретация регрессии
- •2.2.6. Диаграммы регрессии
- •2.2.6. Регрессионные функции
- •§2.3. Парный нелинейный регрессионный анализ в ms Excel
- •2.3.1. Полиномиальное приближение
- •2.3.2. Логарифмическое приближение
- •2.3.3. Показательное приближение
- •2.3.4. Экспоненциальное приближение
- •Глава 3. Множественный линейный регрессионный анализ
- •§3.1. Спецификация модели. Отбор факторов при построении уравнения множественной регрессии
- •§3.2. Метод наименьших квадратов (мнк). Свойства оценок на основе мнк
- •§3.3. Проверка существенности факторов и показатели качества регрессии
- •§3.4. Линейные регрессионные модели с гетероскедастичными остатками
- •§3.5. Обобщенный метод наименьших квадратов (омнк)
- •§3.6. Регрессионные модели с переменной структурой (фиктивные переменные)
- •Решение
- •Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Глава 4. Множественный линейный регрессионный анализ средствами ms Excel
- •§4.1. Интерпретация результатов регрессии
- •Значимость коэффициентов
- •Интерпретация регрессионных статистик
- •Интерпретация анализа дисперсии
- •§4.2. Анализ остатков
- •§4.3. Использование линии тренда для прогноза
- •Интерпретация прогноза
- •Глава 5. Гетероскедастичность и автокорреляция
- •§5.1. Обнаружение гетероскедастичности
- •Графический анализ остатков
- •Тест ранговой корреляции Спирмена
- •Тест Голдфелда-Квандта
- •§5.2. Методы смягчения проблемы гетероскедастичности
- •Дисперсии отклонений известны (метод взвешенных наименьших квадратов)
- •5.2.2. Дисперсии отклонений неизвестны
- •§5.3. Автокорреляция
- •Суть и причины автокорреляции
- •Обнаружение автокорреляции
- •Математико-статистические таблицы в.1. Таблица значений -критерия Фишера при уровне значимости
- •В.2. Критические значения -критерия Стьюдента при уровне значимости 0,10, 0,05, 0,01 (двухсторонний)
- •В.3. Значения статистик Дарбина-Уотсона при 5%-ом уровне значимости
- •Список основной литературы
- •Александр Леонидович осипов Евгений Алексеевич рапоцевич практикум по эконометрике
- •080105.65 ‑ Финансы и кредит;
- •080107.65 – Налоги и налогообложение;
- •080103.65 ‑ Национальная экономика
Введение
Эконометрика – одна из базовых дисциплин экономического образования во всем мире. Однако до недавнего времени она не была признана в СССР и России. Это было связано с тем, что из трех основных составляющих эконометрики – экономической теории, экономической статистики и математики – две первые были представлены в нашей стране неудовлетворительно. Но теперь ситуация изменилась коренным образом.
Существуют различные варианты определения эконометрики:
расширенные, при которых к эконометрике относят все, что связано с измерениями в экономике;
узко инструментально ориентированные, при которых понимают определенный набор математико-статистических средств, позволяющих верифицировать модельные соотношения между анализируемыми экономическими показателями.
На наш взгляд, наиболее точно объяснил сущность эконометрики один из основателей этой науки Р.Фриш, который и ввел этот название в 1926 г.: «Эконометрика – это не то же самое, что экономическая статистика. Она не идентична и тому, что мы называем экономической теорией, хотя значительная часть этой теории носит количественный характер. Эконометрика не является синонимом приложений математики к экономике. Как показывает опыт, каждая из трех отправных точек – статистика, экономическая теория и математика – необходимое, но не достаточное условие для понимания количественных соотношений в современной экономической жизни. Это единство всех трех составляющих. И это единство образует эконометрику».
Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией.
Эконометрический метод складывался в преодолении следующих трудностей, искажающих результаты применения классических статистических методов:
асимметричности связей;
мультиколлинеарности связей;
эффекта гетероскедастичности;
автокорреляции;
ложной корреляции;
наличия лагов.
Для описания сущности эконометрической модели удобно разбить весь процесс моделирования на шесть основных этапов:
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли;
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации, в частности, относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих;
3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в нее связей;
4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей на различных временных или пространственных тактах функционирования изучаемого явления;
5-й этап (идентификация модели) – статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели;
6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Эконометрическое моделирование реальных социально-экономических процессов и систем обычно преследует два типа конечных прикладных целей (или одну из них): 1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы; 2) имитацию различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).
При постановке задач эконометрического моделирования следует определить их иерархический уровень и профиль. Анализируемые задачи могут относиться к макро- (страна, межстрановой анализ), мезо- (регионы внутри страны) и микро- (предприятия, фирмы, семьи) уровням и быть направленными на решение вопросов различного профиля инвестиционной, финансовой или социальной политики, ценообразования, распределительных отношений и т.п.
В настоящее время эконометрика завоевала всеобщее признание. За вклад в развитие эконометрической науки присуждены Нобелевские премии: в 1969 году – Р. Фришу и Я. Тинбергену, стоящим у истоков зарождения эконометрики как науки, в 1980 году – Л. Клейну за применение эконометрических моделей к анализу экономических колебаний и в экономической политике, в 1989 году – Т. Хаавельмо за разработку и анализ одновременных экономических уравнений, в 2000 году – Д. макфаддену за развитие моделей дискретного выбора, в 2003 году – Р. Инглу и К. Грейнджеру за создание моделей условной регрессионной гетероскедастичности и развитие теории коинтеграции временных рядов.
На современном этапе развития эконометрическое исследование может включать: 1) при исследовании моделей по независимым неупорядоченным наблюдениям:
выделение зависимых и независимых переменных согласно некоторой экономической гипотезе;
подбор и анализ данных, преобразование данных в удобный для эконометрического исследования вид;
выбор формы связи между зависимыми и независимыми переменными, спецификацию модели, выбор наилучшего подмножества объясняющих переменных;
оценку параметров модели;
проверку ряда гипотез о виде распределения или о числовых характеристиках случайной компоненты уравнения;
анализ статистической значимости мультиколлинеарности в объясняющих переменных;
определение необходимости использования фиктивных переменных в случае неоднородности данных;
выявление автокорреляции в остатках и пересчет коэффициентов модели при наличии автокорреляции;
селекцию и отбор наиболее конкурентоспособных моделей на независимом материале, проверку адекватности моделей;
анализ структуры связей и построение системы одновременных уравнений, путевой анализ;
проверку условия идентификации системы одновременных уравнений;
оценку параметров системы одновременных уравнений;
прогноз и применение к экономической политике результатов моделирования;
2) при исследовании моделей временных рядов:
выявление тренда, лагов, циклической компоненты;
проверку остатков на гетероскедастичность;
анализ внутренней структуры рядов, анализ специфики убывания автокорреляций и взаимных корреляций, наличия «долговременной памяти», расчет фрактальной размерности и т.д.;
анализ структурных изменений ряда, определение переломных моментов в ряду;
построение сглаженных временных рядов, рекурсивных, адаптивных моделей;
построение моделей ARIMA и VAR;
идентификацию и оценку параметров моделей ( в условиях неприменимости метода наименьших квадратов);
проблемы выявления стационарности и коинтеграции, построение и оценку параметров моделей с исправлением ошибок;
прогноз и применение к экономической политике результатов моделирования.
