Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.Определенный интеграл.doc
Скачиваний:
30
Добавлен:
08.11.2019
Размер:
919.55 Кб
Скачать

§. Формула интегрирования по частям §. Формула Тейлора с остаточным членом в интегральной форме.

И, наконец, получим формулу для остаточного члена ряда Тейлора в интегральной форме. Рассмотрим , и преобразуем его с помощью формулы интегрирования по частям.

= =

= = =

= =

.

Находя, из этого соотношения получим

. Последнее слагаемое это и есть остаточный член ряда Тейлора в интегральной форме. Применяя к нему первую теорему о среднем, получим остаточный член ряда Тейлора в форме Лагранжа, что еще раз подтверждает связь между дифференциальным и интегральным исчислением.

.