
- •1. Обратные термодинамические циклы, их внутренняя и внешняя необратимости.
- •2 Рабочие вещества холодильных машин
- •3 . Схемы, циклы и расчет циклов одноступенчатых холодильных машин.
- •5 Теоретический и действительный циклы и схемы каскадных х.М.
- •6 Теоретический и действительный поршневой компрессор
- •Характеристики теоретического поршневого компрессора
- •8) Назначение и конструкция основных узлов и деталей поршневых компрессоров.
- •9 Регулирование производительности поршневых компрессоров
- •10 Винтовые холодильные компрессоры
- •11 Конструкция и принцип действия двухроторного, маслозаполненного винтового компрессора
- •12 (Х/м) Рабочие органы винтовых компрессоров.
- •13Объемные и энергитические характеристики винтового компрессора.
- •14 Ротационные пластинчатые холодильные км
- •15 Ротационные холодильные компрессоры с катящимся ротором.
- •16.Конструкц., принцип действия и безразмерные размеры центробежного холл. Км.
- •Конструкция и принцип действия центробежного компрессора
- •Преимущества центробежных компрессоров
- •Недостатки центробежных компрессоров
- •Безразмерные параметры турбокомпрессоров
- •17 Основные элементы центробежного компрессора
- •18 Рабочие характеристики, регулирование производительности центробежных хол-х км
- •19 Осевые компрессоры
- •20 Конденсаторы
- •21 Тепловой и конструктивный расчёт конденсаторов х.М.
- •22 Испарители холодильных машин.
- •Кожухотрубные испарители с межтрубным кипением холодильного агента.
- •Кожухотрубные испарители с внутритрубным кипением холодильного агента
- •Кожухотрубные оросительные испарители.
- •Вертикально-трубный испаритель.
- •Панельный испаритель.
- •Комбинированные воздухоохладители.
- •23. Тёпловой и конструктивный расчёт испарителей для охлаждения жидкости.
- •24Тепловой и конструктивный расчет испарителей для охлаждения воздуха.
- •25 Вспомогательные аппараты холодильных машин.
- •26. Циклы и схемы газовых детандерных хм.
- •27 Газовые холодильные машины с вихревыми трубами
- •28 Термоэлектрические холодильные машины.
- •Количество теплоты, отведенной от горячего спая:
- •Потребляемая мощность:
- •29. Агрегатирование хм.
3 . Схемы, циклы и расчет циклов одноступенчатых холодильных машин.
Схемы и циклы одноступенчатых паровых компрессионных холодильных машин.
Схема и цикл с расширением и сжатием в области влажного пара.
А Б В
Рисунок 5.1.Схема и цикл одноступенчатой холодильной машины с сжатием и расширением в области влажного пара.(цикл Карно)
Цикл осуществляется в ХМ, состоящей из КМ, КД, Д и И (см.рисунок 5.1.). Влажный пар х.а. т.1 выходит из И и поступает на всасывание в КМ. В КМ влажный пар адиабатически сжимается при S=const в процессе 1 – 2 от Ро до Рк. Причем точка 2, характеризующая состояние х.а. в конце сжатия, лежит на правой пограничной кривой. Для осуществления процесса сжатия затрачивается lсж. После КМ сжатый насыщенный пар направляется в КД, где конденсируется Тк =const и Рк =const в процессе 2 – 3 за счет теплообмена с внешней охлаждающей средой (водой или воздухом). При этом от х.а. отводится теплота конденсации qк. В процессе конденсации образуется насыщенная жидкость, которая затем поступает в Д. В Д х.а. адиабатически расширяется в процессе 3 - 4 от Рк до Ро при S=const с совершением полезной работы расширения lр. После Д х.а. направляется в И, где жидкость кипит (испаряется) при ТО =const и Ро =const в процессе 4 - 1, отнимая теплоту qо от охлаждаемой среды. Образовавшийся при кипении влажный пар всасывается КМ и цикл повторяется вновь.
Удельная хол-ность цикла или количество теплоты, подведенной к 1 кг х.а. в И qо в S - T-диаграмме: qo = Пл.14аб1 = h1 – h4.
Удельная теплота конденсации qк в S - T- диаграмме:
qк= Пл.23аб2 = h2 – h3.
Удельная работа цикла lц находится из теплового баланса холодильной машины:
qк = lц + qо
Отсюда получем:
lц = qк – qо= Пл.23аб2 – Пл.14аб1 = Пл.12341.
Таким образом, удельная работа цикла равна разности теплоты, подведенной в КД и теплоты, отведенной в И и в S - T- диаграмме эквивалентна площади самого цикла 12341.
С другой стороны с учетом энтальпий холодильного агента
lц = qк – qо = (h2 – h3) – (h1 – h4= (h2 – h1) – (h3 – h4) = lсж - lр,),
где lсж = (h2 – h1) – удельная работа сжатия, т.е. работа, затраченная на сжатие 1 кг пара х.а. в процессе 1-2, Дж/кг; lр = (h3 – h4) – удельная работа расширения, т.е. полезная работа, полученная в детандере одним кг х.а. в процессе 3-4, Дж/кг.
Термодинамическая эффективность цикла находится как отношение удельной холодопроизводительности к затраченной работе цикла:
.
Данный цикл можно рассматривать как теоретический цикл Карно при условии, что температура конденсации Tк =Tос, а температура кипения холодильного агента в И будет равна температуре охлаждаемой среды (источника низкой температуры) Тинт. При этом все процессы цикла будут обратимыми, а работа цикла будет минимальной lmin.
Термодинамическая эффективность цикла Карно оценивается теоретическим холодильным коэффициентом. который является самым высоким из всех обратных термодинамических циклов при одинаковой разнице температур (Тос – Тинт).
Схема и цикл с дросселированием и сжатием влажного пара.
В
действительных промышленных холодильных
установках цикл с расширением в Д
практически не применяется. Вместо Д в
реальных холодильных машинах используется
дроссельное устройство т.к. Д представляет
собой сложный дорогостоящий механизм
по конструкции напоминающий КМ с обратным
принципом действия. На преодоление сил
трения в нем расходуется часть полученной
полезной работы при расширении
холодильного агента. В связи с этим
действительная полученная работа
расширения оказывается пренебрежимо
малой по сравнению с затраченной работой
сжатия. Она является существенной только
в очень крупных холодильных установках.
Рис 5.2 Схема и цикл с дросселированием и сжатием влажного пара
Кроме того из-за сложности конструкции Д является ненадежным, требующим постоянного обслуживания. И наоборот в качестве дроссельных устройств используются очень простые и дешевые приспособления (вентиль, шайба, капилярная трубка и др.). Они значительно надежней в работе и практически не требуют специального обслуживания. Однако замена Д дроссельным устройством приводит к двум видам необратимых потерь цикла (см. рисунок 5.3).
Рис.5.3.Схема и цикл одноступенчатой холодильной машины с сжатием в области влажного пара и дросселированием.
Во-первых заметно уменьшается удельная хол-ность цикла qо, т.к. процесс дросселирования сопровождается необратимыми потерями и протекает при постоянной энтропии (процесс 3-4) в отличие от адиабатического процесса расширения 3-4, т.е.
qо2 = (h1 – h4) qо1 = (h1 – h4)
Во вторых теряется полезная работа расширения, получаемая в Д
lр = h3 – h4 = 0,
тогда работа такого цикла будет равна:
lц2 = lc = h2 – h1 < lц1.
Холодильный коэффициент цикла с дросселированием намного меньше, чем цикла с расширением в детандере
Схема и цикл с перегревом пара и переохлаждением жидкого холодильного агента перед дросселированием.
Для увеличения хол-ности действительных холодильных машин поддерживается режим, при котором в И выкипает весь жидкий х.а. Для гарантированного исключения попадания жидкости в КМ всегда пар х.а. перед всасыванием перегревается. В холодильных установках предприятий массового питания для сжатия пара как правило применяются поршневые КМ. Попадание даже небольшого количества жидкости в полость цилиндров может вызвать гидравлический удар и аварию всей ХМ, так как жидкость практически не сжимаема. Поэтому «сухой ход» – это обязательное условие работы КМ ХМ. Кроме того с целью снижения необратимых потерь при дросселировании в реальных ХМ жидкий х.а. перед дроссельным устройством охлаждается. Это повышает удельную хол-ность цикла и холодильной установки в целом. Перегрев пара перед всасыванием в КМ осуществляется или во всасывающем трубопроводе, или в самом И, или в специальном аппарате – РТ. Охлажение жидкого х.а. перед дросселированием может происходить или в специальном переохладителе, или КД, или также в РТ. В малых хладоновых ХМ торговли и общественного питания как правило используется РТ. Схема и цикл холодильной машины с РТ показаны на рисунке 5.4.
Рисунок 5.4 – Схема и цикл холодильной машины с регенеративным теплообменником.
После И насыщенный пар х.а. состояния т.1′ направляется в РТ, где перегревается в процессе 1′ - 1″ за счет теплообмена с теплым жидким х.а., идущим из КД. Перегретый пар всасывается КМ, в котором адиабатически сжимается в процессе 1″ - 2″ от Ро до Рк. При этом его температура повышается. Сжатый горячий пар подается в КД. где сначала охлаждается до температуры насыщения, а затем конденсируется в общем процессе 2″ - 3′. Образовавшаяся в процессе конденсации жидкость поступает в РТ, в котором охлаждается в процессе 3′ - 3″ за счет теплообмена с холодным паром, выходящим из И. Охлажденный жидкий хладагент дросселируется в процессе 3″ - 4″ от Рк до Ро. После дросселирования х.а. поступает в И, где жидкость кипит в процессе 4″ - 1′, отводя теплоту от охлаждаемой среды. Пар, образовавшийся при кипении, перегревается в РТ, всасывается КМ и цикл повторяется вновь.
Удельная холодопроизводительность цикла:
qо3 = h1′ - h4″.
Удельная работа циклаlц3 = h2″ - h1″.
Массовый расход холодильного агента
где - Qо – полная тепловая нагрузка испарителя (полная хол-ность ХМ).
Объемный расход хладагента Vа = Gа∙х∙νвс,
где νвс – удельный объем всасываемого пара холодильного агента, м3/кг.
Теоретическая потребляемая мощность компрессором
Nт = lц3∙Gа.
Холодильный коэффициент цикла
Степень перегрева пара перед всасыванием в КМ и охлаждения жидкости перед дросселированием зависит от вида рабочего вещества и конкретных условий работы ХМ. Так например для аммиачных машин при среднетемпературном режиме перегрев принимается Δtвс = (5 – 10)С, для хладоновых Δtвс = (10 – 30)С. В аммиачных ХМ РТ не применяется из-за его низкой эффективности. Поэтому в таких машинах имеет место незначительное охлаждение жидкости перед дросселированием Δtохл = (3 –5)С. В хладоновых особенно малых машинах РТ обязателен не только для охлаждения, но и для возврата в КМ масла высокой концентрации (выпаривания жидкого х.а. из маслохладонового раствора). В этом случае состояние жидкого х.а. перед дросселированием определяется из теплового баланса регенеративного теплообменника, который имеет вид:
qпод = qотв,
где qпод – количество подведенной теплоты от теплого жидкого х.а., Дж/кг;
qпод = h3' - h3",
где qотв – количество отведенной теплоты от холодного пара после И, Дж/кг;
qотв = h1" – h1'.
h3' – h3'' = h1'' – h1'
Отсюда находится энтальпия жидкого х.а. после РТ h3":
h3" = h3' – (h1" – h1').