
- •1. Обратные термодинамические циклы, их внутренняя и внешняя необратимости.
- •2 Рабочие вещества холодильных машин
- •3 . Схемы, циклы и расчет циклов одноступенчатых холодильных машин.
- •5 Теоретический и действительный циклы и схемы каскадных х.М.
- •6 Теоретический и действительный поршневой компрессор
- •Характеристики теоретического поршневого компрессора
- •8) Назначение и конструкция основных узлов и деталей поршневых компрессоров.
- •9 Регулирование производительности поршневых компрессоров
- •10 Винтовые холодильные компрессоры
- •11 Конструкция и принцип действия двухроторного, маслозаполненного винтового компрессора
- •12 (Х/м) Рабочие органы винтовых компрессоров.
- •13Объемные и энергитические характеристики винтового компрессора.
- •14 Ротационные пластинчатые холодильные км
- •15 Ротационные холодильные компрессоры с катящимся ротором.
- •16.Конструкц., принцип действия и безразмерные размеры центробежного холл. Км.
- •Конструкция и принцип действия центробежного компрессора
- •Преимущества центробежных компрессоров
- •Недостатки центробежных компрессоров
- •Безразмерные параметры турбокомпрессоров
- •17 Основные элементы центробежного компрессора
- •18 Рабочие характеристики, регулирование производительности центробежных хол-х км
- •19 Осевые компрессоры
- •20 Конденсаторы
- •21 Тепловой и конструктивный расчёт конденсаторов х.М.
- •22 Испарители холодильных машин.
- •Кожухотрубные испарители с межтрубным кипением холодильного агента.
- •Кожухотрубные испарители с внутритрубным кипением холодильного агента
- •Кожухотрубные оросительные испарители.
- •Вертикально-трубный испаритель.
- •Панельный испаритель.
- •Комбинированные воздухоохладители.
- •23. Тёпловой и конструктивный расчёт испарителей для охлаждения жидкости.
- •24Тепловой и конструктивный расчет испарителей для охлаждения воздуха.
- •25 Вспомогательные аппараты холодильных машин.
- •26. Циклы и схемы газовых детандерных хм.
- •27 Газовые холодильные машины с вихревыми трубами
- •28 Термоэлектрические холодильные машины.
- •Количество теплоты, отведенной от горячего спая:
- •Потребляемая мощность:
- •29. Агрегатирование хм.
14 Ротационные пластинчатые холодильные км
Ротационные КМ относятся к КМ объемного принципа действия. Основными рабочими органами таких КМ явлются роторы. В ХМ нашли применение 2 конструкции: многопластинчатые и компрессоры с катящимся ротором (однопластинчатые).
Многопластинчатые ротационные КМ:КМ состоит из цилиндрического корпуса, внутри которого расположен эксцентриковый ротор. В роторе по всему диаметру прорезаны пазы. В каждый паз вставлена пластина. В тихоходных КМ пластины прижимаются к корпусу цилиндра с помощью пружин, установленных в пазы. В быстроходных КМ пружины отсутствуют. В КМ отсутствуют всасывающие и нагнетательные клапаны. Вместо них имеются всасывающие и нагнетательные окна. При вращении ротора вокруг своей оси пластины прижимаются к цилиндрическому корпусу за счет действия центробежных сил инерции. Процесс всасывания начинается в тот момент, когда очередная пластина пройдет нижнюю кромку всасывающего окна. При дальнейшем вращении ротора объем ячейки увеличивается и она заполняется паром холодильного агента, т.е. происходит процесс всасывания. Процесс всасывания заканчивается тогда, когда пластина проходит верхнюю кромку всасвающего окна. При этом объем ячейки отсекается от всасывающего окна.
При дальнейшем вращении ротора, пластины начинают входить в пазы и объем ячейки уменьшаеся, т.е. начинается процесс сжатия. Процесс сжатия заканчивается тогда, когда пластина пройдет верхнюю кромку нагнетательного окна. При этом объем ячейки соединяется с нагнетательной полостью и начинается процесс нагнетания.
Процесс нагнетания заканчивается тогда, когда пластина пройдет нижнюю кромку нагнетательного окна.
Путь от нижней кромки нагнетательного окна до нижней кромки всасывающего окна называется холостым ходом компрессора. Оставшийся в ячейке пар холодильного агента , передавливается чкрез перепускную трубку в другую ячейку с меньшим давлением.
Теоретическая
объемная производительность КМ:
.
максимальный
объем ячейки между пластинами;
частота
вращения ротора;
количество
ячеек;
Действительная
объемная произ-ть:
коэффициент
подачи КМ.
Массовая
произ-ть КМ:
.
Холодопроизводительность
КМ:
Вт.
-
уд холод-ть.
- уд объем всас-го
пара;
Теоретическая
мощность КМ:
,Вт
Индикаторная мощность: ,Вт
ходной
патрубок второй секции, который также
расположен в нижней части корпуса.
Вт.
Элек-ая
мощность КМ:
Вт
мех КПД.
Эффективный
хол-ый коэф для сальниковых КМ:
,
Электрический
хол-ый коэф для бессальниковых КМ:
,
Ротационные КМ с катящимся ротором (однопластинчатые ротационные КМ) КМ состоит из цилиндрического корпуса, внутри которого расположен эксцентриковый вал, на валу свободно насажен ротор.К ротору прижимается одна разделительная пластина с помощью пружины. Пластина перемещается в пазу корпуса. С одной стороны пластины расположено всасывающее окно без клапана, а с другой стороны нагнетательное окно с клапаном.
Эксцентриковый вал вращается вокруг оси цилиндра. При этом трение скольжения происходит между валом и внутренней поверхностью ротора. Наружная поверхность ротора катается по внутренней поверхности цилиндрического корпуса. К ротору постоянно прижимаетя разделительная пластина. Разделительная пластина делит внутренний объем корпуса на две серповидных полости: полость всасывания и полость нагнетания.
При расположении ротора в верхней части корпуса, пластина полностью задвинута. Весь объем корпуса соединен с окном всасывания,т.к нагнетательный клапан закрыт. При дальнейшем вращении вала, ротор прокатывается через всасывающее окно, полость всасывания начинает увеличиваться и заполняться паром холодильного агента через всасывающее окно, т.е в них происходит процесс всасывания. Одновременно с этим полость сжатия уменьшается. В ней давление возрастает, т.е происходит процесс сжатия. Процесс сжатия заканчивается тогда, когда давление увеличивается на до величины выше давления нагнетания . При этом нагнетательный клапан открывается и пар через нагнетательное окно выталкивается в нагнетательную полость, т.е начинается процесс нагнетания. Путь ротора от нагнетательного окна до всасывающего окна называется холостым ходом компрессора
Теоретическая
объемная производительность КМ:
максимальный
внутренний объем.
,
м
Далее расчет проводится аналогично.
Преимущества ротационных КМ 1.Простота конструкции, простота эксплуатации, хорошая уравновешенность. 2.Более высокое давление всасывания при одинаковой температуре кипения. 3.Более высокая надежность работы по сравненю с поршневыми КМ.
Недостатки ротационных КМ 1.Большая мощность трения. 2.Перетечки пара через торцевые зазоры. 3.Возможность набухания и заклинивания неметаллических пластин при влажном ходе КМ. 4.Пульсация потоков. 5.Большой износ пластин. 6.В многопластинчатых КМ постоянное внутреннее давление сжатия.