
- •Генетика, её предмет и содержание.
- •3.Формы наследственности.Виды ядерной наследственности
- •4. Уровни организации наследственного материала у эукариотических организмов.Их характеристика.
- •5. Ген и его свойства
- •6. Хромосомный уровень организации наследственного материала. Характеристика хромосом.
- •7.Геномный уровень организации клеточного материала.
- •8. Аллельные гены. Множественный аллелизм.
- •9. Взаимодействие аллельных генов.Характеристика, примеры.
- •10.Наследование групп крови(ab0).Резус-фактора и гистосовместимости у человека.
- •11.Менделирующая наследственность у человека.Законы г.Менделя их формулировка, проявление.
- •12.Цитоплазматическая наследственность.Виды, примеры.
- •13.Типы наследования. Примеры признаков с разными типами наследования.
- •15.Взаимодействие неаллельных генов:виды комплементарности , взаимодействия при меры.
- •16.Взаимодействие неаллельных генов: эпистаз , полимерия, аллелизм, исключение, эффект положения.Примеры.
- •17.Хромосомная теория наследственности.
- •18.Кариотип и идиограмма.Денверская, Лондонская классификация хромосом человека.
- •19.Сцепленное наследование.Кроссинговер.
- •20. Карты хромосом: генетическая, цитологическая, физическая, химическая, секвенсовая. Картирование хромосом человека.
- •Предопределение пола. Виды, пример.
- •Генетическое определение пола. Виды, пример.
- •24. Определение пола у человека. Уровни дифференциации пола в развитии.
- •Сцепленное с полом наследование. Примеры признаков у человека.
- •Нарушение расхождения хромосом при мейозе и его последствия (на примере половых хромосом).
- •27.Половой хроматин.Диагностическое значение его определения.
- •28.Днк как материальная основа наследственности.Прямые и непрямые доказательства роли днк в передаче наследственных свойств.
- •29.Генетический код и его свойства.
- •30.Определение, свойства, классификации генов.
- •31.Строение гена у про- и эукариот.
- •32.Этапы биосинтеза белка.
- •33.Регуляция экспрессии генов у про- и эукариот.
- •34.Оперон.Транскриптон.
- •35.Мультигенные семейства.
- •36.Псевдогены, онкогены…..
- •37.Изменчивость как фундаментальное свойство всего живого.
- •39.Модификационная и случайная изменчивость.
- •40.Комбинативная изменчивость.Примеры.
- •43.Мутация и их виды.
- •4. Общие закономерности мутационного процесса. Механизмы возникновения генных мутаций
- •44.Хромосомные мутации.
- •45.Геномные мутации…..
- •46.Закон гомологичных рядов.
- •47.Мутагены, механизмы действия.
- •48.Мутационный процесс у человека.
- •49.Методы учета летальных мутаций.
- •50.Репарация генетического материала.
- •51.Биологические антимутационные механизмы.
- •53.Человек как объект биологического анализа.
- •56.Биохимический и иммуногенетический методы диагностических наследственных заболеваний.
- •59.Хромосомные и наследственные заболевания связанные с нарушением аутосом.
- •66.Генетический полиморфизм
- •69.Медико-генетическое консультирование.
- •Онтогенетический уровень развития
- •Размножение – универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений.
- •Эволюция форм размножения. Формы бесполого и полового размножения.
- •Оплодотворение и партеногенез. Половой диморфизм.
- •Предмет биологии развития. Концепции онтогенеза.
- •Характеристика основных типов программ развития.
- •Периодизация онтогенеза высших многоклеточных организмов.
- •Характеристика эмбрионального периода онтогенеза.
- •Феноменология онтогенеза: прогенез. Характеристика яиц Хордовых.
- •Характеристика постэмбрионального периода онтогенеза.
- •Периодизация постнатального онтогенеза человека. Взаимосвязь биологического и социального в развитии.
- •14. Морфогенез.Гипотезы Чайлда, Гурича позиционной информации
- •17.Краткая характеристика старческого периода постнатального развития человека.Основные гипотезы о механизмах старения.
- •18.Продолжительность жизни.Проявление старения на всех уровнях развития организма.Биологические и социальные аспекты долголетия.
- •20.Изменения онтогенеза, имеющие эволюционное и приспособительное значение: диапауза, эмбрионизация, деэмбрионизация, неотения.
- •21.Регенерация органов и тканей. Формы регенерации.
- •28.Генетические, клеточные и системные основы гомеостатических реакций.
27.Половой хроматин.Диагностическое значение его определения.
Половой хроматин, плотное окрашивающееся тельце, обнаруживаемое в неделящихся ядрах клеток у гетерогаметных (имеющих Х и Y половые хромосомы) животных и человека. П. х. подразделяют на Х-хроматин, или тельце Барра (открыт в 1949 английскими исследователями М. Барром и Л. Бертрамом), и Y-хроматин (открыт в 1970 шведскими учёными Т. Касперсоном и Л. Цех). Х-хроматин — интенсивно окрашивающееся основными красителями тельце (0,7—1,2 мкм), чаще прилегающее к ядерной оболочке и имеющее треугольную полулунную или округлую форму. Y-хроматин значительно меньше по размерам, выявляется при окраске ядра флюорохромами (акрихин, акрихиниприт) и исследовании в ультрафиолетовом свете. У особей женского пола (тип XX) одна из Х-хромосом неактивна, что проявляется в её более сильной спирализации и уплотнении. В интерфазном ядре эта спирализованная Х-хромосома и видна в виде Х-хроматина. Y-хроматин у человека и некоторых приматов имеет большой гетерохроматиновый участок, который даёт интенсивную флюоресценцию. Т. о., технически простое исследование интерфазного ядра позволяет судить о состоянии системы половых хромосом. Х-хроматин более или менее часто встречается у женщин в ядрах клеток всех тканей (например, в клетках эпителия слизистой оболочки рта в 15—60% ядер). Число ядер с Х-хроматином зависит от интенсивности размножения клеток в данной ткани и от гормонального состояния организма. Изменение количества П. х. свидетельствует об изменении количества половых хромосом, что детальнее выявляется анализом кариотипа. Определением П. х. широко пользуются для установления пола ребёнка (что ныне возможно и до его рождения и необходимо в случае наследования болезней, сцепленных с полом).
28.Днк как материальная основа наследственности.Прямые и непрямые доказательства роли днк в передаче наследственных свойств.
29.Генетический код и его свойства.
Генети́ческий код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре нуклеотида — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален для почти всех живых организмов.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на матрице иРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.
Свойства генетического кода
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов. (Не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
Однозначность — определённый кодон соответствует только одной аминокислоте. (Свойство не является универсальным. Кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии) (Из этого свойства также есть ряд исключений, см. таблицу в разделе "Вариации стандартного генетического кода" в данной статье).
Вариации стандартного генетического кода
Первый пример отклонения от стандартного генетического кода был открыт в 1979 году при исследовании генов митохондрий человека. С того времени было найдено несколько подобных вариантов включая многообразные альтернативные митохондриальные коды, например, прочитывание стоп-кодона УГА в качестве кодона, определяющего триптофан у микоплазм. У бактерий и архей ГУГ и УУГ часто используются как стартовые кодоны. В некоторых случаях гены начинают кодировать белок со старт-кодона, который отличается от обычно используемого данным видом.
В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в иРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.
Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.