
- •Генетика, её предмет и содержание.
- •3.Формы наследственности.Виды ядерной наследственности
- •4. Уровни организации наследственного материала у эукариотических организмов.Их характеристика.
- •5. Ген и его свойства
- •6. Хромосомный уровень организации наследственного материала. Характеристика хромосом.
- •7.Геномный уровень организации клеточного материала.
- •8. Аллельные гены. Множественный аллелизм.
- •9. Взаимодействие аллельных генов.Характеристика, примеры.
- •10.Наследование групп крови(ab0).Резус-фактора и гистосовместимости у человека.
- •11.Менделирующая наследственность у человека.Законы г.Менделя их формулировка, проявление.
- •12.Цитоплазматическая наследственность.Виды, примеры.
- •13.Типы наследования. Примеры признаков с разными типами наследования.
- •15.Взаимодействие неаллельных генов:виды комплементарности , взаимодействия при меры.
- •16.Взаимодействие неаллельных генов: эпистаз , полимерия, аллелизм, исключение, эффект положения.Примеры.
- •17.Хромосомная теория наследственности.
- •18.Кариотип и идиограмма.Денверская, Лондонская классификация хромосом человека.
- •19.Сцепленное наследование.Кроссинговер.
- •20. Карты хромосом: генетическая, цитологическая, физическая, химическая, секвенсовая. Картирование хромосом человека.
- •Предопределение пола. Виды, пример.
- •Генетическое определение пола. Виды, пример.
- •24. Определение пола у человека. Уровни дифференциации пола в развитии.
- •Сцепленное с полом наследование. Примеры признаков у человека.
- •Нарушение расхождения хромосом при мейозе и его последствия (на примере половых хромосом).
- •27.Половой хроматин.Диагностическое значение его определения.
- •28.Днк как материальная основа наследственности.Прямые и непрямые доказательства роли днк в передаче наследственных свойств.
- •29.Генетический код и его свойства.
- •30.Определение, свойства, классификации генов.
- •31.Строение гена у про- и эукариот.
- •32.Этапы биосинтеза белка.
- •33.Регуляция экспрессии генов у про- и эукариот.
- •34.Оперон.Транскриптон.
- •35.Мультигенные семейства.
- •36.Псевдогены, онкогены…..
- •37.Изменчивость как фундаментальное свойство всего живого.
- •39.Модификационная и случайная изменчивость.
- •40.Комбинативная изменчивость.Примеры.
- •43.Мутация и их виды.
- •4. Общие закономерности мутационного процесса. Механизмы возникновения генных мутаций
- •44.Хромосомные мутации.
- •45.Геномные мутации…..
- •46.Закон гомологичных рядов.
- •47.Мутагены, механизмы действия.
- •48.Мутационный процесс у человека.
- •49.Методы учета летальных мутаций.
- •50.Репарация генетического материала.
- •51.Биологические антимутационные механизмы.
- •53.Человек как объект биологического анализа.
- •56.Биохимический и иммуногенетический методы диагностических наследственных заболеваний.
- •59.Хромосомные и наследственные заболевания связанные с нарушением аутосом.
- •66.Генетический полиморфизм
- •69.Медико-генетическое консультирование.
- •Онтогенетический уровень развития
- •Размножение – универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений.
- •Эволюция форм размножения. Формы бесполого и полового размножения.
- •Оплодотворение и партеногенез. Половой диморфизм.
- •Предмет биологии развития. Концепции онтогенеза.
- •Характеристика основных типов программ развития.
- •Периодизация онтогенеза высших многоклеточных организмов.
- •Характеристика эмбрионального периода онтогенеза.
- •Феноменология онтогенеза: прогенез. Характеристика яиц Хордовых.
- •Характеристика постэмбрионального периода онтогенеза.
- •Периодизация постнатального онтогенеза человека. Взаимосвязь биологического и социального в развитии.
- •14. Морфогенез.Гипотезы Чайлда, Гурича позиционной информации
- •17.Краткая характеристика старческого периода постнатального развития человека.Основные гипотезы о механизмах старения.
- •18.Продолжительность жизни.Проявление старения на всех уровнях развития организма.Биологические и социальные аспекты долголетия.
- •20.Изменения онтогенеза, имеющие эволюционное и приспособительное значение: диапауза, эмбрионизация, деэмбрионизация, неотения.
- •21.Регенерация органов и тканей. Формы регенерации.
- •28.Генетические, клеточные и системные основы гомеостатических реакций.
20. Карты хромосом: генетическая, цитологическая, физическая, химическая, секвенсовая. Картирование хромосом человека.
Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.
Впервые в 1913 — 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом. Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.
Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетических карты разных видов живых организмов. Помимо генетических, существуют и другие карты хромосом.
Рестрикционная карта – вид физической карты, на которой указан порядок следования и расстояния между сайтами расщепления ДНК рестриктазами (обычно участок узнавания рестриктазы 4-6 п.н.). Маркерами этой карты являются рестрикционные фрагменты/сайты рестрикции.
Цитологические карты хромосом, схематическое изображение хромосом с указанием мест фактического размещения отдельных генов, полученное с помощью цитологических методов. Ц. к. х. составляют для организмов, для которых обычно уже имеются генетические карты хромосом. Каждое место расположения гена (локус) на генетической карте организма, установленное на основе частоты перекреста участков хромосом (кроссинговера), на Ц. к. х. привязано к определённому, реально существующему участку хромосомы, что служит одним из основных доказательств хромосомной теории наследственности. Для построения Ц. к. х. используют данные анализа хромосомных перестроек (вставки, делеции и др.) и, сопоставляя изменения морфологических признаков хромосом при этих перестройках с изменениями генетических свойств организма, устанавливают место того или иного гена в хромосоме. Цитологическими методами легко определить отсутствие участка хромосомы или перенос его в др. место. Сопоставление Ц. к. х. с генетическими показало, что физическое расстояние между генами в хромосомах не соответствует генетическому (видимо, частота кроссинговера неодинакова в разных участках хромосом), поэтому плотность распределения генов на цитологических и генетических картах хромосом различна. Так было установлено важное генетическое явление — неравномерность частот перекреста по длине хромосомы. Линейное расположение генов и их последовательность, установленные генетическими методами, подтверждаются Ц. к. х.
Физическая карта – графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов.
Рестрикционная карта – представление генома в виде упорядоченного набора рестрикционных фрагментов, получаемые ферментами – реструктазами (обычно используют несколько реструктаз).
Химическая карта – расположение по длине хромосомы А-Т и Г-Ц пар при нуклеотидных оснований, выявляемых методами химического анализа.
Секвенсовая карта – определение первичной структуры ДНК (расположение в нуклеотидной цепочке) методами секевнирования. Метод Сенгера (дезокси метод): основан на синтезе изучаемой цепи ДНК in vitro остановкой синтеза на заданном основании путем присоединения дидезоксинуклеотида.
Группы сцепления генов у человека, их характеристика.
Cовместное наследование дискретных менделевских факторов. Сцепление обусловлено расположением локусов в одной хромосоме.
Число генов у каждого организма значительно превышает число хромосом. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен американским генетиком Т. Морганом и его учениками.
Предположим, что два гена - А и В - находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам. В анафазе мейоза I гомологичные хромосомы расходятся в разные клетки и образуется два сорта гамет - АВ и ab (вместо четырех, как это должно быть при дигибридном скрещивании ), которые повторяют комбинацию генов в хромосоме родителя. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно, или сцепленно (закон Т. Моргана). Группы генов, расположенных в одной хромосоме, составляют группу сцепления. Сцепленные гены расположены в хромосомах в линейном порядке. Число групп сцепления соответствует числу пар хромосом, т.е. гаплоидному набору. Так, у человека 46 хромосом - 23 группы сцепления, у дрозофилы 8 хромосом - 4 группы сцепления.
Однако при анализе наследования сцепленных генов было установлено, что сцепление не бывает абсолютным, может нарушаться, в результате чего возникают новые гаметы и аВ Аb с новыми комбинациями генов, отличающимися от родительской гаметы. Причина нарушения сцепления и возникновения новых гамет - кроссинговер - перекрест хромосом в профазе мейоза I, Перекрест и обмен участками гомологичных хромосом приводит к возникновению качественно новых хромосом и, следовательно, к постоянной "перетасовке" - рекомбинации генов.
Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больший процент гамет с рекомбинированными генами, а следовательно, и больший процент особей, отличных от родителей. Т. Морган и его сотрудники показали, что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: человека, дрозофилы, мыши, кукурузы, гороха, пшеницы, дрожжей и др.