
- •Естествознание в системе форм общественного сознания
- •3.Философия, математика, гуманитарные и естественные науки и их объекты
- •4. Естественнонаучная и гуманитарная культуры. Специфика и взаимосвязь естественнонаучного и гуманитарного типов культур
- •5. Проблема постнеклассического межкультурного диалога естественных и гуманитарных наук
- •8. Движение и его виды. Относительность движения
- •9. Законы сохранения и их роль в формировании научной картины мира
- •10. Пространство и время как основные свойства материи
- •§ 2. Термодинамические системы и их характеристики
- •13.Обратимые и необратимые процессы. Равновесное состояние и флуктуации. Закон возрастания энтропии
- •15. Бифуркации и аттракторы. Спонтанная самоорганизация в природе и обществе
- •17. Соотношение неопределенностей и квантово-волновой дуализм
- •18. Квантовая инженерия в наномире.
- •19. Современные представления о строении атома
- •20. Представление об элементарных частицах и их взаимодействии
- •21. Элементы современной космологии (физическая вселенная)
- •22. Химия как наука, современная химическая картина мира (структурные уровни организации материи с точки зрения химии)
- •23. Классификация химических веществ
- •24. Растворы и их особенности
- •25. Химическая идентификация
- •26. Химические процессы
- •27. Химия экстремальных состояний
- •28. Роль современной химии в экономике
- •29. Химические процессы и материалы
- •30. Химия и нанотехнологии
- •33. Биология как наука и особенности биологического познания мира
- •34. Фундаментальные и частные биологические теории
- •35. Традиционный, физико-химический, эволюционный и биоинженерный периоды развития биологии. Основные достижения биологии в эти периоды
- •41.Структурные уровни организации живой материи
- •53. Экологические параметры социального развития и глобальные проблемы современности
5. Проблема постнеклассического межкультурного диалога естественных и гуманитарных наук
Последние десятилетия XX и начала XXI столетий могут быть охарактеризованы как течение третьей научной революции, в основном благодаря открытиям в области эволюционной химии, физики лазеров, породившей синергетику, термодинамики нестационарных необратим мых процессов, породившей теорию диссипативных структур, теорий автопоэза, которые все вместе ведут нас к новейшей постнеклассической рациональности. Важнейшими признаками постнеклассической рациональности является полная непредсказуемость, закрытоеть будущего и выполнимость принципов необратимости времени и движения.
. 6.Идеальные образы объектов реального мира (твердое тело, частица, вакуум, среда, поле, вихрь, волна)
Идеал (от фр. ideal) — образец, прообраз, понятие совершенства, высшая, как правило, недостижимая цель стремлений.
Идеализация — 1) мыслительное конструирование понятий об объектах, процессах и явлениях, не существующих в реальности, в природе, но таких, для которых есть исходные прообразы в реальном мире (например, точка, плоскость — идеально гладкая и абсолютно ровная поверхность, абсолютно твердое (упругое) тело, идеальная жидкость, идеальный газ и т. д.). Идеализация физических тел и понятий пространства, времени и пр. послужила началом возникновения классической науки Галилея — Ньютона, т. е. позволяет формулировать законы, строить абстрактные схемы реальных процессов; 2) представление кого-либо или чего-либо лучшим, чем есть на самом деле, в действительности; наделение качествами, соответствующими идеалу Идеализированная модель физического тела
Идеализированная модель физического тела - в физике - абстрактный объект:
- являющийся моделью реального объекта; и
- обладающий некоторыми физическими свойствами реального объекта, существенными для определенного круга задач.
Модели такого рода позволяют:
- изучать реальные объекты;
- формулировать физические законы; и
- создавать физические теории
Элементарная частица — это частица без внутренней структуры, то есть не содержащая других частиц]. Элементарные частицы — фундаментальные объекты квантовой теории поля. Они могут быть классифицированы по спину: фермионы имеют полуцелый спин, а бозоны — целый спин.частица- Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Маленькая доля, часть чего-нибудь
. Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (λ/d 1), средний (λ/d~1) и высокий (λ/d 1) вакуум.
Следует различать понятия физического вакуума и технического вакуума.
Физический вакуум
Под физическим вакуумом в современной физике понимают полностью лишённое массы пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.
На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.
Поле — поток «горячих» вихревых частиц.это материальный объект природы. Действующий и развивающийся по определенным законам.Не все поля, существующие в природе, хорошо описаны и измерены, неизвестно и их влияние на человека, а многие наверняка еще не открыты. Лучше всего на настоящий период изучены электрическое, магнитное и гравитационное поле. Менее изучены, но поддаются математическому описанию электромагнитные поля. Поле в физике — одна из форм материи, характеризующая все точки пространства (или, шире, пространства-времени) и обладающая бесконечным числом степеней свободы. Каждой точке пространства при этом присваивается определённая физическая величина. Эта величина, как правило, меняется при переходе от одной точки к другой. В зависимости от математического вида этой величины выделяют скалярные, векторные, тензорные и спинорные поля.
Также поля делятся в зависимости от своей природы на электромагнитные, гравитационные, магнитное, электрическое и поля ядерных сил. Проявляются поля в виде взаимодействия (переносимого с конечной скоростью) тел (при этом сила взаимодействия определяется различными характеристиками тел: массой для гравитационного поля, зарядом для электромагнитного и т. д.), которые в квантовой физике объясняются передачей специфичных для каждого типа поля частиц (фотонов для электромагнитного, гипотетических гравитонов для гравитационного и т. д.). Долгое время считалось, что поле является только наглядным теоретическим объяснением таких явлений, как световые волны, пока в 1887 Генрих Рудольф Герц не доказал существование электромагнитного поля экспериментально.
] Среда (в теории систем) — все объекты, не включенные в систему, с которыми система обменивается веществом, энергией и информацией.
Среда, являясь зависимым понятием, всегда рассматривается по отношению к некоторой системе и представляет собой множество всех элементов, которые не входят в данную систему, но с которыми данная система может взаимодействовать.
Вихрьпорывистое круговое движение
Волна́ — изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве. Другими словами, «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины — например, плотности вещества, напряжённости электрического поля, температур]».
В связи с этим волновой процесс может иметь самую разную физическую природу: механическую, химическую, электромагнитную (электромагнитное излучение), гравитационную (гравитационные волны), спиновую (магнон), плотности вероятности (ток вероятности) и т. д.
7. Физические характеристики идеальных объектов и представление о способах их описания ( масса; заряды и их действие на расстоянии; заряды как источники полей; «свободные» поля, суперпозиция полей), единицы физических величин
Масса, физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).
В Современной физике понятие «количество вещества» имеет другой смысл, а под массой понимают два различных свойства физического объекта:
Гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями — фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии, и какое гравитационное поле создаёт само это тело (активная гравитационная масса) — эта масса фигурирует в законе всемирного тяготения.
Инертная масса, которая характеризует меру инертности тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.
ЗАРЯД - физ. величина, являющаяся источником поля, посредством к-рого осуществляется взаимодействие частиц, обладающих этой характеристикой
Электри́ческий заря́д — это связанное с телом свойство, позволяющее ему быть источником электрического поля и участвовать в электромагнитных взаимодействиях. Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с. Впервые электрический заряд был введён в законе Кулона в 1785 году. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×109 H.Величина заряда –численная характеристика носителей заряда и заряженных тел, которые может принимать положительные и отрицательные значения. Носителем эл. зарядов явл.эл.заряженные элементарные частицы электрон и протон. Существует 2 рода эл.зарядов названыых положительным и отрицательным, заряды могут передоваться в существенном контакте от одного тела к другому.
заимодействие зарядов
Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу
Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.
При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.
При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.
При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:
результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что электростатический потенциал, создаваемый в данной точке системой зарядов, есть сумма потенциалов отдельных зарядов.
Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:
Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.
Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.
Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.
Если поле образовано не одним зарядом, а несколькими, то силы, действующие на пробный заряд, складываются по правилу сложения векторов. Поэтому и напряженность системы зарядов в данной точке, поля равна векторной сумме напряженностей полей от каждого заряда в отдельности.
Согласно
принципу суперпозиции электрических
полей можно найти напряженность в любой
точке А поля двух точечных зарядов
и
(рис. 13.1). Сложение векторов
и
производится по правилу параллелограмма.
Направление результирующего вектора
находится построением, а его абсолютная
величина может быть подсчитана по
формуле
Длина L метр (м)
Масса M килограмм (кг) экстенсивная величина
Время T .секунда (с)
Сила тока I ампер (А)
Температура Θ Средняя кинетическая энергия частиц объекта. кельвин (К) интенсивная величина
Количество вещества N Количество частиц, отнесенное к количеству атомов в 0,012 кг 12C. моль (моль) экстенсивная величина
Сила света J кандела (кд)
Производные величины Символ Описание Единица СИ Примечания
Давление p .кг/(м·с2) (паскаль, Па) интенсивная величина
Линейная плотность ρl Масса на единицу длины. кг/м
Импульс p Произведение массы и скорости тела. кг·м/с экстенсивная, сохраняющаяся величина
Магнитный поток Φ Величина, учитывающая интенсивность магнитного поля и занимаемую им область. кг/(с2·А) (вебер, Вб)
Момент импульса L Мера вращения объекта. кг·м2/c сохраняющаяся величина
Момент силы T Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. кг·м2/с2 вектор
Мощность P Скорость изменения энергии. кг·м2/с3 (ватт, Вт)
Напряжение U Изменение потенциальной энергии, приходящееся на единицу заряда. м2·кг/(с3·А) (вольт, В) скаляр
Объём V
Плотность ρ Масса на единицу объёма. кг/м3 интенсивная величина
Площадь S . м2
Поверхностная плотность ρA Масса на единицу площади. кг/м2
Механическая работа A Скалярное произведение силы и перемещения. кг·м2/с2 (джоуль, Дж) скаляр
Сила F Действующая на объект внешняя причина ускорения. кг·м/с2 (ньютон, Н) вектор
Скорость v Быстрота изменения координат тела. м/с вектор
Телесный угол Ω стерадиан (ср)
Угловая скорость ω Скорость изменения угла. с−1 радиан в секунду
Угловое ускорение α Быстрота изменения угловой скорости с−2 радиан на секунду в квадрате
Угол θ Величина изменения направления. радиан (рад)
Ускорение a Быстрота изменения скорости объекта. м/с² вектор
Частота f Число повторений события за единицу времени. с−1 (герц, Гц)
Электрический заряд Q А·с (кулон, Кл) экстенсивная, сохраняющаяся величина
Электрическое сопротивление R сопротивление объекта прохождению электрического тока м2·кг/(с3·А2) (ом, Ом) скаляр
Энергия E Способность тела или системы совершать работу. кг·м2/с2 (джоуль, Дж) экстенсивная, сохраняющаяся величина, скаляр