Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
01 - Начала химии.doc
Скачиваний:
205
Добавлен:
27.09.2019
Размер:
26.37 Mб
Скачать

Типы химических реакций

13. Воздух. Кислород. Горение

Кислород является самым распространённым химическим элементом на Земле. Содержание его в земной коре и гидросфере представлено в таблице 2 "Распространённость химических элементов". На долю кислорода приходится примерно половина (47 %) массы литосферы. Он является преобладающим химическим эле­ментом гидросферы. В земной коре кислород присутствует только в связанном виде (оксиды, соли). Гидросфера также представлена в основном связанным кис­лородом (часть молекулярного кислорода растворена в воде).

В атмосфере свободного кислорода содержится 20,9 % по объёму. Воздух – сложная смесь газов. Сухой воздух на 99,9 % состоит из азота (78,1 %), кислорода (20,9 %) и аргона (0,9 %). Содержание этих газов в воздухе практически постоян­но. В состав сухого атмосферного воздуха также входят диоксид углерода, неон, гелий, метан, криптон, водород, оксид азота(I) (оксид диазота, гемиоксид азота – N2О), озон, диоксид серы, монооксид уг­лерода, ксенон, оксид азота(IV) (диоксид азота – NО2).

Состав воздуха определил французский химик Антуан Лоран Лавуазье в конце XVIII века (таблица 13). Он доказал содержание кислорода в воздухе, и назвал его "жизненный воздух". Для этого он нагревал на печи ртуть в стеклянной реторте, тонкая часть которой поводилась под стеклянный колпак, опущенный в водяную баню. Воздух под колпаком оказывался замкнутым. При нагревании ртуть соединялась с кислородом, превращаясь в оксид ртути красного цвета. "Воздух", остав­шийся в стеклянном колпаке после нагревания ртути, не содержал кислорода. Мышь, помещённая под колпак, задыхалась. Прокалив оксид ртути, Лавуазье снова выделил из него кислород и вновь получил чистую ртуть.

Содержание кислорода в атмосфере стало заметно увеличиваться около 2 млрд. лет назад. В результате реакции фотосинтеза поглощался некоторый объём углекислого газа и выделялся такой же объём кислорода. На рисунке таблицы схема­тически показано образование кислорода при фотосинтезе. В процессе фотосин­теза в листьях зелёных растений, содержащих хлорофилл, при поглощении солнечной энергии происходит превращение воды и углекислого газа в углеводы (сахара) и кислород. Реакцию образова­ния глюкозы и кислорода в зелёных растениях можно записать в следующем виде:

2О + 6СО2 = С6Н12О6 + 6О2↑.

Образующаяся глюкоза превращается в нерастворимый в воде крахмал, который накапливается в растениях.

Таблица 13

Воздух. Кислород. Горение

Фотосинтез представляет собой сложный химический процесс, включающий несколько стадий: поглощение и транспортировку солнечной энергии, использо­вание энергии солнечного света для инициирования фотохимических окисли­тельно-восстановительных реакций, восстановление углекислого газа и образованием угле­водов.

Солнечный свет – это электромагнитное излучение разных длин волн. В молекуле хлоро­филла при поглощении видимого света (красного и фиолетового) происходят переходы электронов из одного энергетического состояния в другое. На фотосинтез расходуется только небольшая часть солнечной энергии (0,03 %), достигающей поверхности Земли.

Весь имеющийся на Земле диоксид углерода проходит через цикл фотосинте­за в среднем за 300 лет, кислород – за 2000 лет, вода океанов – за 2 млн. лет. В настоящее время в атмосфере установилось постоянное содержание кислорода. Он практически полностью расходуется на дыхание, горение и гниение органиче­ских веществ.

Кислород – одно из самых активных веществ. Процессы с участием кислоро­да называются реакциями окисления. К ним относят горение, дыхание, гниение и многие другие. На таблице показано горение нефти, которое идёт с выделением теплоты и света.

Реакции горения могут принести не только пользу, но и вред. Горение можно остановить, прекратив доступ воздуха (окислителя) к горящему предмету с помощью пены, песка или одеяла.

Пенные огнетушители наполняют концентрированным раствором питьевой соды. При её контакте с концентрированной серной кислотой, находящейся в стеклянной ампуле в верхней части огнетушителя, образуется пена углекислого газа. Для приведения в действие огнетушитель переворачивают и ударяют об пол металлическим штиф­том. При этом ампула с серной кислотой разбивается и образующийся в результате реакции кислоты с гидрокарбонатом натрия углекислый газ вспенивает жидкость и выбрасывает её из огнетушителя сильной струёй. Пенис­тая жидкость и углекислый газ, обволакивая горящий предмет, оттесняют воздух и гасят пламя.