
- •4. Определение скорости и ускорения поршня с помощью производных
- •4.1. Определение пути поршня
- •4.2. Определение скорости поршня
- •Степень быстроходности двигателей
- •4.3. Определение ускорения поршня
- •Определение пути, скорости, ускорения поршня в зависимости от угла поворота коленчатого вала
- •Результаты кинематического расчета двигателя
- •4.4. Приближенные вычисления пути, скорости, ускорения поршня
- •Значения функции cos φ
- •Контрольные вопросы
- •5. Расчетное и экспериментальное определение давления в цилиндре и диагностика двигателя по индикаторной диаграмме
- •5.1. Основные термины и определения
- •5.2. Общее устройство и принцип работы двигателя внутреннего сгорания
- •5.2.1. Четырехтактный рабочий цикл
- •5.2.2. Индикаторная диаграмма двигателя
- •Четырехтактного двигателя
- •5.3. Методика построения индикаторной диаграммы и определение положительной работы при помощи интегрирования
- •Расчетные данные для построения линии сжатия и расширения
- •Определение индикаторной работы
- •5.4. Экспериментальное определение давления газов в цилиндре двигателя
- •5.5. Диагностика двигателя по анализу индикаторной диаграммы
- •5.6. Расчет процесса сгорания топлива
- •Контрольные вопросы
- •6. Определение момента инерции элементов коленчатого вала
- •6.1. Расчетно-экспериментальное определение момента инерции части коленчатого вала
- •6.2. Расчетное определение момента инерции элементов коленчатого вала
- •Контрольные вопросы
- •7. Определение момента инерции маховика
- •7.1. Расчетно-экспериментальное определение момента инерции маховика
- •7.2. Расчетное определение момента инерции маховика
- •Контрольные вопросы
- •8. Расчет маховика
- •8.1. Определение момента инерции маховика по результатам динамического расчета двигателя
- •Значение силы т на различных коренных шейках
- •8.2. Пример расчета маховика
- •Контрольные вопросы
- •9. Расчет коленчатого вала двигателя на крутильные колебания
- •9.1. Свободные крутильные колебания вала с одной массой
- •9.2. Вынужденные крутильные колебания вала с одной массой
- •9.3. Последовательность расчета коленчатого вала на крутильные колебания
- •9.3.1. Приведение крутильной системы вала
- •9.3.2. Определение частоты собственных крутильных
- •9.3.3. Определение резонансной критической
- •9.3.4. Выработка рекомендаций, устраняющих
- •Контрольные вопросы
- •10.2. Методика построения дифференциальной характеристики подачи топлива
- •Определение подачи топлива на участках подъема иглы
- •10.3. Расчет при помощи современной вычислительной техники дифференциальной характеристики впрыскивания
- •Результаты расчета на эвм топливной аппаратуры дизеля КамАз -740
- •10.4. Формы дифференциальной характеристики впрыскивания
- •10.5. Построение интегральной характеристики впрыскивания
- •Контрольные вопросы
- •11. Расчет параметров струи дизельного топлива
- •11.1. Расчет мелкости распыливания жидкого топлива
- •Основные размеры соплового наконечника
- •11.2. Определение формы распыленного топливного факела при впрыске в неподвижную среду
- •Контрольные вопросы
- •12. Расчет центробежного компрессора и центростремительной турбины
- •12.1. Методика расчёта центробежного компрессора
- •С радиальными лопатками
- •12.2. Расчёт радиально-осевой турбины
- •Параметры турбокомпрессоров предприятия «Воронежский механический завод»
- •Контрольные вопросы
- •13.2. Выбор основных параметров теплообменника
- •13.3. Пример расчета теплообменного аппарата типа «труба в трубе»
- •Контрольные вопросы
- •14. Гидравлический расчет трубопроводов и насосной установки
- •14.1. Основные расчетные формулы
- •Значения коэффициентов местных сопротивлений
- •14.2. Насосная установка
- •Рекомендуемая средняя скорость в линиях всасывания и нагнетания в зависимости от вязкости жидкости
- •14.3. Совмещенная характеристика насоса и трубопровода
- •14.4. Регулирование режимов работы насоса
- •14.5. Выбор основных параметров центробежного насоса
- •Характеристики различных типов лопастных колес
- •14.6. Пример расчета колеса центробежного насоса
- •20. Определив значения радиальной и окружной скоростей на выходе из колеса, найдем абсолютную скорость по формуле
- •Контрольные вопросы
- •15. Истечение жидкости
- •15.1. Истечение жидкости через отверстия
- •15.2. Истечение жидкости через насадки
- •15.3. Истечение жидкости при переменном напоре
- •15.4. Принцип работы простейшего карбюратора
- •15.5. Расчёт простейшего карбюратора
- •Контрольные вопросы
- •16. Устройство, принцип действия и основы расчета двигателя внешнего сгорания
- •16.1. Идеальный цикл Стирлинга
- •16.2. Основные формулы, описывающие протекание процессов цикла двигателя Стирлинга
- •16.3. Принцип действия двигателя Стирлинга
- •16.4. Схема работы двигателя Стирлинга с кривошипно-шатунным механизмом и его расчет
- •Контрольные вопросы
- •2.1. Число
- •2.2. Число e
- •2.3. Логарифмы
- •2.4. Свойства логарифмов
- •Вычисление площадей и объемов некоторых фигур
- •2.2. Усеченный конус
- •Библиографический список
- •644099, Г. Омск, ул. П. Некрасова, 10
Значения коэффициентов местных сопротивлений
Виды местных сопротивлений |
Значения коэффициентов местных сопротивлений |
1. Фильтры |
1,7 – 2,2 |
2. Угольники с поворотом под прямым углом |
1,5 – 2,0 |
3. Угольники с плавным поворотом под углом 900 |
0,12 – 0,15 |
4. Тройники с соединением потока |
2,0 – 3,0 |
5. Тройники с разделением потока |
1,0 – 2,0 |
6. Обратные клапаны |
2,0 – 4,0 |
7. Вход в трубу без закругления кромок |
0,5 |
8. Выход из трубы больших размеров |
1,0 |
9. Кран |
5,0 – 7,0 |
10. Задвижка при среднем открытии |
2,0 |
11. Задвижка открытая |
0,1 |
Суммарная потеря напора в трубопроводе определяется по формуле
,
(14.10)
где ∑h – сумма потерь напора на трение по длине в трубе, у которой имеются участки с различными сечениями; ∑hм – сумма потерь напора в местных сопротивлениях.
Следует отметить, что потери напора по длине трубы постоянного сечения изменяются пропорционально длине (линейно), а в местных сопротивлениях потери напора изменяются скачком (в конкретном сечении). При нахождении общих потерь потери на отдельных участках суммируют.
Технологические схемы трубопроводов бывают простыми и разветвленными (сложными). При расчете разветвленных (параллельных) систем необходимо помнить, что расход жидкости до разветвления будет равен расходам, например, движущимся по двум ответвлениям. Определив внутренние диаметры труб (по допустимой скорости и расходу), вычисляют потери напора по формулам, приведенным выше.
Гидравлический расчет трубопроводов заканчивается определением величины потерянного напора по длине и в местных сопротивлениях. Потери напора должны быть минимальными, обеспечивая высокую эффективность при эксплуатации технологических схем.
Определив диаметр технологического трубопровода, проводят расчет на прочность, оценивают толщину стенки и выбирают его марку (сортамент). Затем выбирают тип, размер насоса по требуемой подаче и необходимому напору.
14.2. Насосная установка
Н
асосная
установка
предназначена для перемещения жидкости
и сообщения ей необходимой по величине
энергии давления и скорости. На рис. 14.1
приведена принципиальная схема насосной
установки, перемещающей жидкость из
приемного (всасывающего) резервуара 1
в напорный 12.
Установка содержит входной фильтр 2,
клапан 3,
который не пропускает жидкость в
обратном направлении и не дает возможности
системе самотеком опорожняться.
В
Рис.
14.1. Схема насосной
установки
,
(14.11)
где РАТ – атмосферное давление (1∙105 Н/м2); РВС – абсолютное давление во всасывающей линии.
Для нормальной работы насоса необходимо, чтобы давление РВС было больше давления парообразования Рпар(насыщенных паров).
Например,
давление Рпар
для нефтепродукта при 38 0С
равно 0,7∙105 Н/м2.
Выбираем РВС
равным
0,8∙105 Н/м2,
тогда при плотности
,
соответствующей 700 кг/м3,
высота всасывания (согласно формуле
(14.11)) будет равна примерно 3 м.
Высота всасывания hвс для темных нефтепродуктов составляет 4 ̶ 6 м. Для светлых нефтепродуктов (бензин, керосин) высота всасывания выбирается равной 3–4 м, воды 6−7 м. При высоте всасывания больше допустимой начинается процесс кавитации (образование в жидкости пузырьков) и разрушения лопаток насоса. Для контроля разрежения в линии всасывания используется вакуумметр 5. Следует помнить, что если вакуумметр показывает 0,3∙105 Н/м2 (недостаток давления до атмосферного) или 0,3 атм, то абсолютное давление в линии всасывания равно 0,7∙105 Н/м2 (0,7 атм) или 70 кПа.
Высоту всасывания и нагнетания необходимо выбирать в зависимости от вязкости жидкости и давления парообразования. В табл. 14.2 приведены рекомендуемые значения средних скоростей во всасывающей и напорной магистралях в зависимости от вязкости жидкости.
Таблица 14.2