
- •4. Определение скорости и ускорения поршня с помощью производных
- •4.1. Определение пути поршня
- •4.2. Определение скорости поршня
- •Степень быстроходности двигателей
- •4.3. Определение ускорения поршня
- •Определение пути, скорости, ускорения поршня в зависимости от угла поворота коленчатого вала
- •Результаты кинематического расчета двигателя
- •4.4. Приближенные вычисления пути, скорости, ускорения поршня
- •Значения функции cos φ
- •Контрольные вопросы
- •5. Расчетное и экспериментальное определение давления в цилиндре и диагностика двигателя по индикаторной диаграмме
- •5.1. Основные термины и определения
- •5.2. Общее устройство и принцип работы двигателя внутреннего сгорания
- •5.2.1. Четырехтактный рабочий цикл
- •5.2.2. Индикаторная диаграмма двигателя
- •Четырехтактного двигателя
- •5.3. Методика построения индикаторной диаграммы и определение положительной работы при помощи интегрирования
- •Расчетные данные для построения линии сжатия и расширения
- •Определение индикаторной работы
- •5.4. Экспериментальное определение давления газов в цилиндре двигателя
- •5.5. Диагностика двигателя по анализу индикаторной диаграммы
- •5.6. Расчет процесса сгорания топлива
- •Контрольные вопросы
- •6. Определение момента инерции элементов коленчатого вала
- •6.1. Расчетно-экспериментальное определение момента инерции части коленчатого вала
- •6.2. Расчетное определение момента инерции элементов коленчатого вала
- •Контрольные вопросы
- •7. Определение момента инерции маховика
- •7.1. Расчетно-экспериментальное определение момента инерции маховика
- •7.2. Расчетное определение момента инерции маховика
- •Контрольные вопросы
- •8. Расчет маховика
- •8.1. Определение момента инерции маховика по результатам динамического расчета двигателя
- •Значение силы т на различных коренных шейках
- •8.2. Пример расчета маховика
- •Контрольные вопросы
- •9. Расчет коленчатого вала двигателя на крутильные колебания
- •9.1. Свободные крутильные колебания вала с одной массой
- •9.2. Вынужденные крутильные колебания вала с одной массой
- •9.3. Последовательность расчета коленчатого вала на крутильные колебания
- •9.3.1. Приведение крутильной системы вала
- •9.3.2. Определение частоты собственных крутильных
- •9.3.3. Определение резонансной критической
- •9.3.4. Выработка рекомендаций, устраняющих
- •Контрольные вопросы
- •10.2. Методика построения дифференциальной характеристики подачи топлива
- •Определение подачи топлива на участках подъема иглы
- •10.3. Расчет при помощи современной вычислительной техники дифференциальной характеристики впрыскивания
- •Результаты расчета на эвм топливной аппаратуры дизеля КамАз -740
- •10.4. Формы дифференциальной характеристики впрыскивания
- •10.5. Построение интегральной характеристики впрыскивания
- •Контрольные вопросы
- •11. Расчет параметров струи дизельного топлива
- •11.1. Расчет мелкости распыливания жидкого топлива
- •Основные размеры соплового наконечника
- •11.2. Определение формы распыленного топливного факела при впрыске в неподвижную среду
- •Контрольные вопросы
- •12. Расчет центробежного компрессора и центростремительной турбины
- •12.1. Методика расчёта центробежного компрессора
- •С радиальными лопатками
- •12.2. Расчёт радиально-осевой турбины
- •Параметры турбокомпрессоров предприятия «Воронежский механический завод»
- •Контрольные вопросы
- •13.2. Выбор основных параметров теплообменника
- •13.3. Пример расчета теплообменного аппарата типа «труба в трубе»
- •Контрольные вопросы
- •14. Гидравлический расчет трубопроводов и насосной установки
- •14.1. Основные расчетные формулы
- •Значения коэффициентов местных сопротивлений
- •14.2. Насосная установка
- •Рекомендуемая средняя скорость в линиях всасывания и нагнетания в зависимости от вязкости жидкости
- •14.3. Совмещенная характеристика насоса и трубопровода
- •14.4. Регулирование режимов работы насоса
- •14.5. Выбор основных параметров центробежного насоса
- •Характеристики различных типов лопастных колес
- •14.6. Пример расчета колеса центробежного насоса
- •20. Определив значения радиальной и окружной скоростей на выходе из колеса, найдем абсолютную скорость по формуле
- •Контрольные вопросы
- •15. Истечение жидкости
- •15.1. Истечение жидкости через отверстия
- •15.2. Истечение жидкости через насадки
- •15.3. Истечение жидкости при переменном напоре
- •15.4. Принцип работы простейшего карбюратора
- •15.5. Расчёт простейшего карбюратора
- •Контрольные вопросы
- •16. Устройство, принцип действия и основы расчета двигателя внешнего сгорания
- •16.1. Идеальный цикл Стирлинга
- •16.2. Основные формулы, описывающие протекание процессов цикла двигателя Стирлинга
- •16.3. Принцип действия двигателя Стирлинга
- •16.4. Схема работы двигателя Стирлинга с кривошипно-шатунным механизмом и его расчет
- •Контрольные вопросы
- •2.1. Число
- •2.2. Число e
- •2.3. Логарифмы
- •2.4. Свойства логарифмов
- •Вычисление площадей и объемов некоторых фигур
- •2.2. Усеченный конус
- •Библиографический список
- •644099, Г. Омск, ул. П. Некрасова, 10
Определение пути, скорости, ускорения поршня в зависимости от угла поворота коленчатого вала
φ, град |
Путь, м |
Скорость, м/с |
Ускорение, м/с2 |
|||||||||
Знак |
A |
S |
S* |
Знак |
B |
V |
V* |
Знак |
C |
j |
J* |
|
0 30 60 90 360 |
+ + + + |
0,0 0,17 0,60 1,13 |
0,0 0,008 0,03 0,056 |
|
+ + + + |
0,0 0,61 0,98 1,0 |
0,0 19 31 32 |
|
+ + + + |
1,26 1,0 0,37 0,27 |
24850 19720 7300 5324 |
|
В табл. 4.3 приведены результаты кинематического расчета на ЭВМ двигателя на базе ВАЗ-2108 с частотой вращения 4900 мин-1, угловой скоростью 513 с-1, = 0,26 и радиусом кривошипа 0,035 м.
Таблица 4.3
Результаты кинематического расчета двигателя
φ, град |
S, м |
V, м/с |
J, м/с2 |
0 |
0,000 |
0,000 |
11765,45 |
30 |
0,006 |
11,153 |
9300,542 |
60 |
0,021 |
17,817 |
3454,933 |
90 |
0,040 |
18,207 |
-2427,79 |
120 |
0,057 |
13,718 |
-5882,72 |
150 |
0,067 |
7,054 |
-6872,75 |
180 |
0,071 |
0,000 |
-6909,87 |
210 |
0,067 |
-7,054 |
-6872,75 |
240 |
0,057 |
-13,718 |
-5882,72 |
270 |
0,040 |
-18,207 |
-2427,79 |
300 |
0,021 |
-17,817 |
3454,933 |
330 |
0,006 |
-11,153 |
9300,542 |
360 |
0,000 |
0,000 |
11765,45 |
На рис. 4.3, 4.4, 4.5 показаны графики изменения перемещения поршня, его скорости и ускорения [8]. Применение быстродействующих ЭВМ позволяет уменьшить шаг расчета до 10 и менее, что повысит точность расчета.
Рис. 4.3. Изменение перемещения поршня
Рис. 4.4. Изменение скорости поршня
Рис. 4.5. Изменение ускорения поршня