
- •Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения. Мгновенная скорость, мгновенное ускорение.
- •Криволинейное движение материальной точки. Вывод формул тангенциального и нормального ускорений. Простейшие виды движения материальной точки.
- •Вращательное движение. Угол поворота. Угловая скорость. Угловое ускорение. Связь между угловыми и линейными характеристиками движения.
- •Динамика материальной точки. Масса. Сила. Законы Ньютона. Инерциальные системы отсчета. Импульс силы.
- •Механическая система. Внутренние и внешние силы. Центр масс.
- •Понятие энергии и работы. Работа переменной силы. Консервативные и диссипативные силы. Мощность.
- •7. Потенциальная энергия. Потенциальные поля. Потенциальная энергия гравитационного взаимодействия и упругой деформации.
- •Работа упругой силы (потенциальная энергия упруго деформированного тела)
- •8. Кинетическая энергия. Полная механическая энергия системы.
- •Вращательное движение твердого тела. Динамические .Характеристики {момент силы, момент инерции). Теорема Штейнера.
- •1.Момент силы, действующей на материальную точку, относительно оси вращения.
- •2. Момент импульса.
- •3. Момент инерции материальной точки относительно оси вращения
- •4.Теорема Штейнера.
- •Кинетическая энергия вращающегося тела. Основное уравнение динамики вращательного движения.
- •Основные величины поступательного движения и их аналоги во вращательном движении. Аналоги трех законов Ньютона для вращательного движения твердого тела
- •Закон всемирного тяготения. Сила тяжести. Вес. Невесомость.
- •Поле тяготения. Напряженность и потенциал поля.
- •Неинерциальные системы отсчета. Силы инерции при ускоренном поступательном движении системы отсчета. Примеры
- •Неинерциальные системы отсчета. Силы инерции, действующие из тело, покоящееся во вращающейся системе отсчета.
- •Неинерциальные системы отсчета. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.
- •Уравнение движения тела переменной массы.
- •Силы трения. Виды трения. Коэффициент трения.
- •Деформация твердого тела. Деформация растяжения (сжатия). Закон Гука. Деформация сдвига.
- •Закон сохранения импульса. Абсолютно неупругий удар.
- •21. Закон сохранения механической энергии. Абсолютно упругий удар.
- •22. Момент импульса твердого тела. Закон сохранения момента импульса.
- •Преобразования Галилея. Принцип относительности в классической механике.
- •Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца.
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Важнейшие следствия из преобразований Лоренца: одновременность событий, длительность событий, длина тел в различных системах отсчета.
- •Специальная теория относительности. Закон взаимодействия массы и энергии.
- •Гармонические колебательные движения. Свободные колебания. Дифференциальное уравнение свободных незатухающих колебаний.
- •1.1. Свободные незатухающие колебания пружинного маятника
- •Пружинный, физический, математический маятники. Маятник Максвелла.
- •Дифференциальное уравнение свободных затухающих колебаний и его решение. Декремент затухания, логарифмический декремент затухания, добротность контура.
- •30. Дифференциальное уравнение вынужденных колебаний и его решение. Явление механического резонанса. Резонансные кривые.
- •31. Волновые процессы. Уравнение бегущей волны. Фазовая скорость. Понятие дисперсии. Волновое уравнение. Стоячие волны.
- •32. Звуковые волны. Эффект Доплера в акустике.
- •33. Статистический и термодинамический методы исследования. Параметры состояния системы. Равновесные состояния. Равновесные процессы.
- •Основное уравнение молекулярно-кинетической теории идеальных газов. Связь между температурой и средней кинетической энергией поступательного движения молекулы газа.
- •Распределение по проекции скорости
- •Распределение по модулю скоростей
- •Внутренняя энергия идеального газа. Понятие числа степеней свободы молекулы. Закон о равномерном распределении энергии по степеням свободы.
- •Понятие эффективного диаметра молекулы. Среднее число столкновений одной молекулы в единицу времени. Средняя длина свободного пробега молекулы и ее зависимость от давления и температуры.
- •Первый закон термодинамики. Внутренняя энергия системы. Работа, совершаемая газом.
- •Применение первого закона термодинамики к изобарическому и изотермическому процессам.
- •41. Применение первого закона термодинамики к изохорическому и адиабатическому процессам.
- •42. Теплоемкость (удельная, молярная). Уравнение Майера. Связь теплоемкости с числом степеней свободы молекулы.
- •43. Политропические процессы в идеальном газе. Уравнение политропы. Изопроцессы, как частные случаи политропического процесса. Теплоемкость при политропическом процессе.
- •Круговые процессы (циклы). Обратимые и необратимые процессы. Примеры. Тепловая машина и ее кпд. Цикл Карно и его кпд. . .
- •Второй закон термодинамики и его различные формулировки.
- •Энтропия. Основные свойства энтропии (формулировка второго закона термодинамики). Статистический смысл энтропии. Формула Больпмана.
- •47. Явления переноса. Теплопроводность, диффузия, внутреннее трение в газах. Уравнения, описывающие эти явления. Коэффициенты переноса.
- •Реальные газы. Силы межмолекулярного взаимодействия
- •Реальные газы. Уравнение Ван-дер-Ваальса. Смысл поправок в уравнении.
- •Изотермы реального газа. Критические параметры реального газа. Экспериментальные изотермы реального газа.
- •Внутренняя энергия реального газа. Эффект Джоуля-Томсона.
- •Фазовые превращения "твердых тел. Плавление и кристаллизация.
- •Вязкость (внутреннее трение). Методы определения вязкости.
Динамика материальной точки. Масса. Сила. Законы Ньютона. Инерциальные системы отсчета. Импульс силы.
Первый закон Ньютона. Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются). Этот закон часто называется законом инерции, поскольку движение с постоянной скоростью при компенсации внешних воздействий на тело называется инерцией. Системы отсчета, относительно которых тело при отсутствии внешних воздействий движется прямолинейно и равномерно, называют инерциальными системами отсчета. Инерциальных систем отсчета может быть сколь угодно много, т.е. любая система отсчета, которая движется равномерно и прямолинейно по отношению к инерциальной, также является инерциальной. Истинных (абсолютных) инерциальных систем отсчета нет. Причиной изменения скорости движения тел всегда является его взаимодействие с другими телами. При взаимодействии двух тел всегда изменяются скорости и первого, и второго тела, т.е. оба тела приобретают ускорения. Ускорения двух взаимодействующих тел могут быть различными, они зависят от инертности тел.
Инертность – способность тела сохранять свое состояние движения (покоя). Чем больше инертность тела, тем меньшее ускорение оно приобретет при взаимодействии с другими телами, и тем будет ближе его движение к равномерному прямолинейному движению по инерции. Масса – физическая величина, характеризующая инертность тела. Чем большей массой обладает тело, тем меньшее ускорение оно получает при взаимодействии. За единицу массы в СИ принят килограмм: [m]=1 кг. В инерциальных системах отсчета любое изменение скорости тела происходит под действием других тел. Сила – это количественное выражение действия одного тела на другое. Сила – векторная физическая величина, за ее направление принимают направление ускорения тела, которое вызывается этой силой. У силы всегда есть точка приложения.
В
СИ за единицу силы принимаются сила,
которая телу массой 1 кг сообщает
ускорение 1 м/с2.
Эта единица называется Ньютоном:
.
Сила, действующая на тело, равна
произведению массы тела на сообщаемое
этой силой ускорение:
.
Второй
закон Ньютона. Таким образом, ускорение
тела прямо пропорционально действующей
на тело силе и обратно пропорционально
его массе:
.
Третий
закон Ньютона.
Из опытов по взаимодействию тел следует
,
из второго закона Ньютона
и
,
поэтому
.
Силы взаимодействия между телами:
направлены по одной прямой, равны по
величине, противоположны по направлению,
приложены к разным телам (поэтому не
могут уравновешивать друг друга), всегда
действуют парами и имеют одну и ту же
природу. Законы
Ньютона выполняются одновременно, они
позволяют объяснить закономерности
движения планет, их естественных и
искусственных спутников. Иначе, позволяют
предвидеть траектории движения планет,
рассчитывать траектории космических
кораблей и их координаты в любые
заданные моменты времени. В земных
условиях они позволяют объяснить
течение воды, движение многочисленных
и разнообразных транспортных средств
(движение автомобилей, кораблей,
самолетов, ракет). Для всех этих движений,
тел и сил справедливы законы Ньютона.
По 2-му закону Ньютона изменение скорости тела возможно только в результате его взаимодействия с другими телами, т.е. при действии силы. Пусть на тело массой m в течение времени t действует сила F и скорость его движения изменяется от vo до v. Тогда на основании 2-го закона Ньютона:
.
Величина
называется импульсом силы. Импульс силы
– это векторная физическая величина,
равная произведению силы на время ее
действия. Направление импульса силы
совпадает с направлением силы.
.
– импульс тела (количество движения) –
векторная физическая величина, равная
произведению массы тела на его скорость.
Направление импульса тела совпадает с
направлением скорости.
Импульс силы, действующей на тело, равен изменению импульса тела.