Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamenatsionnye_voprosy_po_fizike.docx
Скачиваний:
35
Добавлен:
27.09.2019
Размер:
1.06 Mб
Скачать
  1. Гармонические колебательные движения. Свободные колебания. Дифференциальное уравнение свободных незатухающих колебаний.

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

или

,

где х — значение изменяющейся величины, t — время, остальные параметры — постоянные: А — амплитуда колебаний, ω — циклическая частота колебаний,  — полная фаза колебаний,  — начальная фаза колебаний.

(собственные колебания), колебания в механич., электрич. или к.-л. др. системе, совершающиеся при отсутствии внеш. воздействия за счёт первоначально внесённой энергии (потенциальной или кинетической, напр. в механич. системах через нач. смещения или нач. скорости). В реальных системах вследствие рассеяния энергии С. к. всегда затухающие. В линейных системах С. к. представляют собой суперпозицию нормальных колебаний.

1.1. Свободные незатухающие колебания пружинного маятника

Пружинным маятником называется система, состоящая из груза массой и невесомой пружины жесткостью

Если можно пренебречь силами сопротивления движению и трением, то при выведении системы из положения равновесия на груз будет действовать только сила упругости пружины. (см. рис. 1.1.1)

Рис. 1.1.1

Запишем уравнение движения груза, составленное по 2-му закону Ньютона:

Спроектируем уравнение движения на ось X, при этом учтем, что сила упругости пропорциональна смещению из положения равновесия и направлена в сторону ему противоположную, а ускорение - это вторая производная координаты по времени. Тогда:

(1)

Преобразуем выражение (1) к виду

Введем обозначение (частота собственных незатухающих колебаний или собственная частота), окончательно получим

(2)

Выражение (2) - это дифференциальное уравнение свободных гармонических незатухающих колебаний.

  1. Пружинный, физический, математический маятники. Маятник Максвелла.

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m. Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения. Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей. Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид: Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так: , где f(x) — это равнодействующая внешних сил соотнесённая к единице массы груза. В случае наличия затухания, пропорционального скорости колебаний с коэффициентом c:

Математи́ческий ма́ятник —материальная точка, подвешенная на невесомой нерастяжимой нити или на невесомом стержне в поле тяжести. Период малых колебаний математического маятника длины l в поле тяжести с ускорением свободного падения g приближенно равен и мало зависит от амплитуды и массы маятника. Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на нерастяжимую нить, то это система с двумя степенями свободы со связью.

Физический маятник — представляет собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела. Определения: — угол отклонения маятника от равновесия; — начальный угол отклонения маятника; — масса маятника; — расстояние от точки подвеса до центра тяжести маятника; — радиус инерции относительно оси, проходящей через центр тяжести. — ускорение свободного падения.

Момент инерции относительно оси, проходящей через точку подвеса: .

Дифференциальное уравнение движения физического маятника

Пренебрегая сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести записывается следующим образом: . Полагая , предыдущее уравнение можно переписать в виде: .

Последнее уравнение аналогично уравнению колебаний математического маятника длиной . Величина называется приведённой длиной физического маятника.  Период малых колебаний физического маятника . Если амплитуда колебаний мала, то корень в знаменателе эллиптического интеграла приближенно равен единице. Такой интеграл легко берется, и получается хорошо известная формула малых колебаний: .

Маятник Максвелла представляет собой диск, неподвижно закрепленный на тонком стержне (рис.1). На концах стержня симметрично относительно диска закреплены нити, с помощью которых маятник подвешен к штативу. При вращении маятника нити могут наматываться на стержень или сматываться с него, обеспечивая тем самым перемещение маятника вверх - вниз. Если, намотав нити на ось, поднять маятник на некоторую высоту и отпустить его, то он начнет опускаться под действием силы тяжести, приобретая одновременно и вращательное движение. В нижней точке, когда маятник опустится на полную длину нитей, поступательное движение вниз прекратится. Нити станут наматываться на вращающийся по инерции стержень, а маятник начнет подниматься вверх, постепенно замедляя свое вращение. После достижения наивысшей точки цикл колебательного движения возобновится. Если mgсила тяготения; T — сила натяжения одной нити; Rрадиус стержня; Jмомент инерции маятника; тогда уравнение для поступательного движения можно записать так: mg − 2T = ma, где aускорение центра масс. Уравнение для вращательного движения при этом будет иметь вид: M = mR(ga) = 2TR=J ε, где ε – угловое ускорение. Маятник движется с постоянным ускорением. Если h – расстояние, пройденное за время t, при равноускоренном движении с нулевой начальной скоростью, то момент инерции можно найти по формуле: J=mR2((gt2)/(2h)-1).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]