- •Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения. Мгновенная скорость, мгновенное ускорение.
- •Криволинейное движение материальной точки. Вывод формул тангенциального и нормального ускорений. Простейшие виды движения материальной точки.
- •Вращательное движение. Угол поворота. Угловая скорость. Угловое ускорение. Связь между угловыми и линейными характеристиками движения.
- •Динамика материальной точки. Масса. Сила. Законы Ньютона. Инерциальные системы отсчета. Импульс силы.
- •Механическая система. Внутренние и внешние силы. Центр масс.
- •Понятие энергии и работы. Работа переменной силы. Консервативные и диссипативные силы. Мощность.
- •7. Потенциальная энергия. Потенциальные поля. Потенциальная энергия гравитационного взаимодействия и упругой деформации.
- •Работа упругой силы (потенциальная энергия упруго деформированного тела)
- •8. Кинетическая энергия. Полная механическая энергия системы.
- •Вращательное движение твердого тела. Динамические .Характеристики {момент силы, момент инерции). Теорема Штейнера.
- •1.Момент силы, действующей на материальную точку, относительно оси вращения.
- •2. Момент импульса.
- •3. Момент инерции материальной точки относительно оси вращения
- •4.Теорема Штейнера.
- •Кинетическая энергия вращающегося тела. Основное уравнение динамики вращательного движения.
- •Основные величины поступательного движения и их аналоги во вращательном движении. Аналоги трех законов Ньютона для вращательного движения твердого тела
- •Закон всемирного тяготения. Сила тяжести. Вес. Невесомость.
- •Поле тяготения. Напряженность и потенциал поля.
- •Неинерциальные системы отсчета. Силы инерции при ускоренном поступательном движении системы отсчета. Примеры
- •Неинерциальные системы отсчета. Силы инерции, действующие из тело, покоящееся во вращающейся системе отсчета.
- •Неинерциальные системы отсчета. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.
- •Уравнение движения тела переменной массы.
- •Силы трения. Виды трения. Коэффициент трения.
- •Деформация твердого тела. Деформация растяжения (сжатия). Закон Гука. Деформация сдвига.
- •Закон сохранения импульса. Абсолютно неупругий удар.
- •21. Закон сохранения механической энергии. Абсолютно упругий удар.
- •22. Момент импульса твердого тела. Закон сохранения момента импульса.
- •Преобразования Галилея. Принцип относительности в классической механике.
- •Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца.
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Важнейшие следствия из преобразований Лоренца: одновременность событий, длительность событий, длина тел в различных системах отсчета.
- •Специальная теория относительности. Закон взаимодействия массы и энергии.
- •Гармонические колебательные движения. Свободные колебания. Дифференциальное уравнение свободных незатухающих колебаний.
- •1.1. Свободные незатухающие колебания пружинного маятника
- •Пружинный, физический, математический маятники. Маятник Максвелла.
- •Дифференциальное уравнение свободных затухающих колебаний и его решение. Декремент затухания, логарифмический декремент затухания, добротность контура.
- •30. Дифференциальное уравнение вынужденных колебаний и его решение. Явление механического резонанса. Резонансные кривые.
- •31. Волновые процессы. Уравнение бегущей волны. Фазовая скорость. Понятие дисперсии. Волновое уравнение. Стоячие волны.
- •32. Звуковые волны. Эффект Доплера в акустике.
- •33. Статистический и термодинамический методы исследования. Параметры состояния системы. Равновесные состояния. Равновесные процессы.
- •Основное уравнение молекулярно-кинетической теории идеальных газов. Связь между температурой и средней кинетической энергией поступательного движения молекулы газа.
- •Распределение по проекции скорости
- •Распределение по модулю скоростей
- •Внутренняя энергия идеального газа. Понятие числа степеней свободы молекулы. Закон о равномерном распределении энергии по степеням свободы.
- •Понятие эффективного диаметра молекулы. Среднее число столкновений одной молекулы в единицу времени. Средняя длина свободного пробега молекулы и ее зависимость от давления и температуры.
- •Первый закон термодинамики. Внутренняя энергия системы. Работа, совершаемая газом.
- •Применение первого закона термодинамики к изобарическому и изотермическому процессам.
- •41. Применение первого закона термодинамики к изохорическому и адиабатическому процессам.
- •42. Теплоемкость (удельная, молярная). Уравнение Майера. Связь теплоемкости с числом степеней свободы молекулы.
- •43. Политропические процессы в идеальном газе. Уравнение политропы. Изопроцессы, как частные случаи политропического процесса. Теплоемкость при политропическом процессе.
- •Круговые процессы (циклы). Обратимые и необратимые процессы. Примеры. Тепловая машина и ее кпд. Цикл Карно и его кпд. . .
- •Второй закон термодинамики и его различные формулировки.
- •Энтропия. Основные свойства энтропии (формулировка второго закона термодинамики). Статистический смысл энтропии. Формула Больпмана.
- •47. Явления переноса. Теплопроводность, диффузия, внутреннее трение в газах. Уравнения, описывающие эти явления. Коэффициенты переноса.
- •Реальные газы. Силы межмолекулярного взаимодействия
- •Реальные газы. Уравнение Ван-дер-Ваальса. Смысл поправок в уравнении.
- •Изотермы реального газа. Критические параметры реального газа. Экспериментальные изотермы реального газа.
- •Внутренняя энергия реального газа. Эффект Джоуля-Томсона.
- •Фазовые превращения "твердых тел. Плавление и кристаллизация.
- •Вязкость (внутреннее трение). Методы определения вязкости.
Неинерциальные системы отсчета. Силы инерции, действующие из тело, покоящееся во вращающейся системе отсчета.
Системы
отсчета, движущиеся относительно
инерциальной системы с ускорением,
называются неинерциальными. В
неинерциальных системах законы Ньютона,
вообще говоря, уже несправедливы. Однако
законы динамики можно применять и для
них, если кроме сил, обусловленных
воздействием тел друг на друга, ввести
в рассмотрение силы особого рода — так
называемые силы инерции. Если учесть
силы инерции, то второй закон Ньютона
будет справедлив для любой системы
отсчета: произведение массы тела на
ускорение в рассматриваемой системе
отсчета равно сумме всех сил, действующих
на данное тело (включая и силы инерции).
Силы инерции Fин
при этом должны быть такими, чтобы вместе
с силами F, обусловленными
воздействием тел друг на друга, они
сообщали телу ускорение а', каким оно
обладает в неинерциальных системах
отсчета, т. е.
(27.1)
Так
как F=ma (a
— ускорение тела в инерциальной системе
отсчета), то
Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.
Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью w (w=const) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол (рис. 41).
В
инерциальной системе отсчета, связанной,
например, с помещением, где установлен
диск, шарик равномерно вращается по
окружности радиусом R
(расстояние от центра вращающегося
шарика до оси вращения). Следовательно,
на него действует сила, равная F=mw2R
и направленная перпендикулярно оси
вращения диска. Она является равнодействующей
силы тяжести Р и силы натяжения нити
Т: F=P+T.
Когда движение шарика установится, то
F=mgtga=mw2R,
откуда
т. е. углы отклонения нитей маятников
будут тем больше, чем больше расстояние
R от центра шарика до оси вращения
диска и чем больше угловая скорость
вращения w.
Относительно
системы отсчета, связанной с вращающимся
диском, шарик покоится, что возможно,
если сила F уравновешивается равной и
противоположно направленной ей силой
Fц, которая является
ничем иным, как силой инерции, так как
на шарик никакие другие силы не действуют.
Сила Fц, называемая
центробежной силой инерции,
направлена по горизонтали от оси вращения
диска и равна
(27.3)
Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.
Из формулы (27.3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения w системы отсчета и радиуса R, но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.
