
- •Билет 1 Взаимодействие тел. Первый закон Ньютона. Инерциальные системы отсчета.
- •Билет 2 Сила. Масса. Второй закон Ньютона. Взаимодействие тел. Сила. Второй закон Ньютона. Принцип относительности в механике.
- •Билет 3 Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.
- •Билет 4 Третий закон Ньютона. Принцип относительности Галилея. (Третий закон Ньютона. Значение законов Ньютона.)
- •Билет 5 Импульс. Закон сохранения импульса.
- •Билет 6 Упругие деформации. Закон Гука. (Сила упругости. Закон Гука.)
- •Билет 7 Взаимодействие точечных зарядов. Закон Кулона.
- •Билет 8 Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Потенциальная и кинетическая энергия. Закон сохранения энергии в механике.
- •Билет 9 Действие магнитного поля на проводник с током. Закон Ампера.
- •Билет10
- •Билет 11 Колебательный контур. Свободные электромагнитные колебания а контуре. Формула Томпсона.
- •Билет 12 Опыт резерфорда. Ядерная модель атома.
- •Билет 13 Магнитный поток. Явление электромагнитной индукции.
- •Билет 14 Квантовые постулаты Бора. Излучение и поглощение света атомами.
- •II постулат Бора (правило частот):
- •Ill постулат Бора (правило квантования орбит): стационарные (разрешенные) электронные орбиты в атоме находятся из условия
- •Билет 15
- •Билет 16
- •Билет 16 Идеальный газ. Изотермический, изобарный и изохорный процессы в идеальном газе. Идеальный газ. Газовые законы. Закон Авогадро. Закон Дальтона.
- •Билет 18
- •Билет 19
- •Билет 20
- •Билет 21
- •Билет 22 Радиоактивность. Закон радиоактивного распада.
- •Билет 23
- •Билет 24
- •Билет 25
- •Билет 26 Электромагнитные волны. Свойства электромагнитных волн. Скорость распространения электромагнитной волны.
- •Билет 27
Билет 9 Действие магнитного поля на проводник с током. Закон Ампера.
Действие магнитного поля на находящийся в нем прямолинейный проводник с током экспериментально исследовал Ампер. Измеряя с помощью динамометра Д модуль силы,
Схема опытов Ампера Определение направления силы Ампера
действующей со стороны магнитного поля на проводник с током, в зависимости от его длины, ориентации, силы тока и индукции магнитного поля, Ампер установил, что исследуемая сила:
пропорциональна длине проводника (F~ /);
пропорциональна модулю индукции магнитного поля (F~B);
пропорциональна силе тока в проводнике (F~/);
зависит от ориентации проводника в магнитном поле, т. е. от угла а, образованного проводником и вектором В.
Объединяя полученные данные, Ампер сформулировал закон (закон Ампера), позволяющий находить силу, с которой магнитное поле с индукцией В действует на проводник с током I длиной l, расположенный под углом α к вектору магнитной индукции:
FA = IBlsinα
Это сила называется силой Ампера.
Сила Ампера всегда перпендикулярна проводнику и вектору магнитной индукции В. Для определения направления силы Ампера используют правило левой руки:
если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора индукции входила в ладонь, а четыре вытянутых пальца указывали бы направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.
Магнитное взаимодействие проводников с током используется для определения в СИ одной из основных единиц — единицы силы тока — ампера.
Экспериментальное задание: «Проверка законов преломления света».
Порядок выполнения задания.
Задание можно выполнить аналогично лабораторной работе № 7 (физика, X класс).
Билет10
Электрический заряд. Элементарный заряд. Закон сохранения электрического заряда.
Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными частицами называется электромагнитным. Интенсивность электромагнитного взаимодействия определяется физической величиной — электрическим зарядом, который обозначается q. Единица измерения электрического заряда — кулон (Кл). 1 кулон — это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов. Один вид заряда назвали положительным, носителем элементарного положительного заряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен е=1,6•10-19 Кл.
Заряд тела всегда представляется числом, кратным величине элементарного заряда:
q=e(Np-Ne), где Np — количество электронов, Ne — количество протонов.
Полный заряд замкнутой системы (в которую не входят заряды извне), т. е. алгебраическая сумма зарядов всех тел остается постоянной:
q1 + q2 + ...+qn = const.
Электрический заряд не создается и не исчезает, а только переходит от одного тела к другому. Этот экспериментально установленный факт называется законом сохранения электрического заряда. Никогда и нигде в природе не возникает и не исчезает электрический заряд одного знака. Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц — электронов — от одних тел к другим.
Электризация — это сообщение телу электрического заряда. Электризация может происходить, например, при соприкосновении (трении) разнородных веществ и при облучении. При электризации в теле возникает избыток или недостаток электронов.
В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка — положительный.
Законы взаимодействия неподвижных электрических зарядов изучает электростатика.
Носителем элементарного заряда является электрон: е=q=1,6•10-19 Кл.
Экспериментальное задание: «Определение центра тяжести тела».
Оборудование: штатив с муфтой и лапкой, гвоздь, отвес (груз на нити), тело произвольной формы (пластинка).
Порядок выполнения задания.
Закрепить гвоздь в лапке штатива.
Подвесить пластинку и отвес на гвоздь.
Вдоль нити отвеса провести линию.
Выбрать на пластинке другую точку подвеса, опять подвесить пластинку и отвес на гвоздь и провести линию вдоль нити отвеса (точки подвеса должны выбираться так, чтобы линии отвеса пересекались).
На пересечении линий отметить центр тяжести плоского тела произвольной формы.