Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika.docx
Скачиваний:
15
Добавлен:
27.09.2019
Размер:
144.22 Кб
Скачать

18. Задача о распределении торговых агентов по городам.

Оптимальное использование рабочих агентов

Торговая фирма продает товары в n различных городах, покупательная способность жителей которых оценивается bj усл. ед., j = 1,…,n. Для реализации товаров фирма располагает n торговыми агентами, каждого из которых она направляет в один из городов. Профессиональный уровень агентов различен; доля реализуемых i-м торговым агентом покупательных способностей составляет аi, i = 1,…,n. Как следует распределить торговых агентов по городам, чтобы фирма получила максимальную выручку от продажи товаров?

Решение этой проблемы может быть найдено с помощью задачи о назначениях. В качестве кандидатов выступают торговые агенты, в качестве работ – города.

Введем параметр сij = ai bj , характеризующий величину покупательных способностей, реализуемых i-м торговым агентом в j-м городе.

Управляющие переменные xij , i = 1,…,n; j = 1,…,n определяются по формуле

xij = 1, если i-й агент направлен в j-й город;

xij = M, в противном случае.

Математическая модель запишется в следующей форме:

Первое и второе ограничения формализуют соответственно условия о том, что в каждый город направляется один торговый агент и один торговый агент не может работать в двух городах. Целевая функция F – это сумма реализованных покупательных способностей всеми торговыми агентами во всех городах. Она должна подлежать максимизации. Для решения задачи венгерским методом надо, как и в предыдущем примере, перейти к противоположной функции.

19. Постановка задачи коммивояжера

Задача коммивояжёра (англ. Travelling salesman problem, TSP) (коммивояжёр — разъездной сбытовой посредник) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в отыскании самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и т. п.) и соответствующие матрицы расстояний, стоимости и т. п. Как правило, указывается, что маршрут должен проходить через каждый город только один раз — в таком случае выбор осуществляется среди гамильтоновых циклов.

Существует несколько частных случаев общей постановки задачи, в частности геометрическая задача коммивояжёра (также называемая планарной или евклидовой, когда матрица расстояний отражает расстояния между точками на плоскости), треугольная задача коммивояжёра (когда на матрице стоимостей выполняется неравенство треугольника), симметричная и асимметричная задачи коммивояжёра. Также существует обобщение задачи, так называемая обобщённая задача коммивояжёра.

Общая постановка задачи, впрочем как и большинство её частных случаев, относится к классу NP-полных задач. Задача коммивояжёра относится к числу трансвычислительных: уже при относительно небольшом числе городов (66 и более) она не может быть решена методом перебора вариантов никакими теоретически мыслимыми компьютерами за время, меньшее нескольких миллиардов лет.

Представление в виде граф

Симметричная задача для четырех городов.

Для возможности применения математического аппарата для решения проблемы, ее следует представить в виде математической модели. Проблему коммивояжёра можно представить в виде модели на графе, то есть, используя вершины и ребра между ними. Таким образом, вершины графа (на рис.: От A до D) соответствуют городам, а ребра между вершинами и — пути сообщения между этими городами. Каждому ребру можно сопоставить критерий выгодности маршрута (На рис.: 20, 42, …), который можно понимать как, например, расстояние между городами, время или стоимость поездки. Маршрутом (также гамильтоновым маршрутом) называется маршрут на таком графе, в который входит по одному разу каждая вершина графа. Задача заключается в отыскании кратчайшего маршрута.

В целях упрощения задачи и гарантии существования маршрута, обычно считается, что модельный граф задачи является полностью связным, то есть, что между произвольной парой вершин существует ребро. В тех случаях, когда между отдельными городами не существует сообщения, этого можно достичь путем ввода рёбер с максимальной длиной. Из-за большой длины такое ребро никогда не попадет к оптимальному маршруту, если он существует.

В зависимости от того, какой критерий выгодности маршрута сопоставляется величине ребер, различают различные варианты задачи, важнейшими из которых являются симметричная и метрическая задачи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]