
- •Основные понятия теории графов. История возникновения
- •2. Понятие ориентированного графа. Его основные структуры
- •3. Понятие неориентированного графа. Его основные структуры.
- •4. Степени и полустепени вершин. Теорема Эйлера о рукопожатии.
- •5. Изоморфизм графов. Теорема Жордана.
- •6. Части графа. Связность графов.
- •7. Операции над графами. Способы задания графов.
- •8. Эйлеровы графы. Критерий эйлеровости. Критерий квазиэлеровости.
- •9. Теория графов. Деревья и лес
- •10. Гамильтоновы графы
- •12. Понятие сети. Понятие двухполюсной сети.
- •14. Разрез сети. Теорема о максимальном потоке и минимальном разрезе
- •16. Постановка задачи о максимальном потоке. Задача о потоке минимальной стоимости.
- •17. Постановка транспортной задачи.
- •18. Задача о распределении торговых агентов по городам.
- •19. Постановка задачи коммивояжера
- •21. Методы спу, их применение. Преимущества спу
- •22. Правила построения сетевых моделей
- •23. Параметры сетевых моделей
- •24. Методы расчета параметров сетевых моделей. Табличный метод расчета параметров сетевой модели.
- •25. Анализ сетевых моделей
- •27. Венгерский метод решения задачи о назначениях
- •28. Решение задачи коммивояжера методом ветвей и границ
- •29. Решение задачи коммивояжера методом ближайшего соседа
- •30. Основные понятия динамического программирования
- •31. Постановка задачи динамического программирования
- •32. Геометрическая интерпретация задачи динамического программирования
- •34. Функциональные уравнения Беллмана
- •36. Основные понятия производственных функций. Их экономический смысл.
- •37. Свойства производственных функций
- •40. Эластичность функции, ее геометрический и экономический смысл
- •43. Виды эластичности в экономике
- •44. Понятие функции полезности.
- •46. Понятие линий безразличия. Бюджетное множество
- •49. Функция спроса в случае кратковременного промежутка
- •50. Модели экономической динамики. Паутинообразная модель
8. Эйлеровы графы. Критерий эйлеровости. Критерий квазиэлеровости.
Эйлеров путь (эйлерова цепь) в графе — это путь, проходящий по всем рёбрам графа и притом только по одному разу. (ср. Гамильтонов путь)
Эйлеров цикл — это эйлеров путь, являющийся циклом.
Эйлеров граф — граф, содержащий эйлеров цикл.
Полуэйлеров граф — граф, содержащий эйлеров путь (цепь).
Критерий эйлеровости
Эйлеров цикл/путь существуют только в связных графах или в графах, которые после удаления всех одиночных вершин превратятся в связные.
В неориентированном графе
Кроме того, согласно теореме, доказанной Эйлером, эйлеров цикл существует тогда и только тогда, когда граф связный и в нём отсутствуют вершины нечётной степени.
Эйлеров путь в графе существует тогда и только тогда, когда граф связный и содержит не более чем две вершины нечётной степени.[1][2] Ввиду леммы о рукопожатиях, число вершин с нечётной степенью должно быть четным. А значит Эйлеров путь существует только тогда, когда это число равно нулю или двум. Причём когда оно равно нулю, эйлеров путь вырождается в эйлеров цикл.
9. Теория графов. Деревья и лес
Особый интерес представляют связные ациклические графы, называемые деревьями. Дерево на множестве р вершин всегда содержит q=p-1 ребер, т.е. минимальное количество ребер, необходимое для того, чтобы граф был связным. Действительно, две вершины связываются одним ребром, и для связи каждой последующей вершины с предыдущими требуется ребро, следовательно, для связи р вершин необходимо и достаточно р-1 ребер. При добавлении в дерево ребра образуется цикл, а при удалении хотя бы одного ребра дерево распадается на компоненты, каждая из которой представляет собой также дерево или изолированную вершину.
Несвязный граф, компоненты которого являются деревьями, называется лесом.
Примерами древовидной структуры являются генеалогический граф (родословное дерево), а также совокупность всех файлов, размещенных на жестком диске компьютера или дискете. Каждый логический диск имеет каталог, называемый главным или корневым. Он имеет оглавление, подобное оглавлению книги. В оглавлении корневого каталога перечислено содержимое диска: имена файлов этого каталога и других каталогов, вложенных в него.
10. Гамильтоновы графы
Гамильтонов граф — в теории графов это граф, содержащий гамильтонову цепь или гамильтонов цикл.
Гамильтонов путь (или гамильтонова цепь) — путь (цепь), содержащий каждую вершину графа ровно один раз. Гамильтонов путь, начальная и конечная вершины которого совпадают, называется гамильтоновым циклом. Гамильтонов цикл является простым остовным циклом (см. Словарь терминов теории графов).
Гамильтоновы путь, цикл и граф названы в честь ирландского математика У. Гамильтона, который впервые определил эти классы, исследовав задачу «кругосветного путешествия» по додекаэдру, узловые вершины которого символизировали крупнейшие города Земли, а рёбра — соединяющие их дороги.
Условия существования
Необходимое условие
Если неориентированный граф G содержит гамильтонов цикл, тогда в нём не существует ни одной вершины x(i) с локальной степенью p(x(i)) < 2. Доказательство следует из определения.