Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekz_voprosy_pedfak.doc
Скачиваний:
58
Добавлен:
27.09.2019
Размер:
468.48 Кб
Скачать
  1. Биосинтез белка. Транскрипция, процессинг, трансляция.

Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии. Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включает трансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов переводится в последовательность остатков аминокислот.

Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК. Аминокислотная последовательность выстраивается при помощи транспортных РНК, которые образуют с аминокислотами комплексы — аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствующий антикодон, «подходящий» к кодону мРНК. Во время трансляции рибосома движется вдоль мРНК, по мере этого наращивается полипептидная цепь. Энергией биосинтез белка обеспечивается за счёт АТФ.

Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.

  1. Днк. Строение, свойства, кодовая система.

Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков. Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид. Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали.

ДНК (дезоксирибонуклеиновая кислота) — биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г), пятиатомный сахар пентозу — дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов

Какие же из перечисленных выше структурных и функциональных особенностей молекулы ДНК позволяют ей хранить и передавать наследственную информации от клетки к клетке, от поколения к поколению, обеспечивать новые комбинации признаков у потомства?

1. Стабильность. Она обеспечивается водородными, гликозидными и фосфодиэфирными связями, а также механизмом репарации спонтанных и индуцированных повреждений;

2. Способность к репликации. Благодаря этому механизму в соматических клетках сохраняется диплоидное число хромосом. Схематично псе перечисленные особенности ДНК как генетической молекулы изображены на рисунке.

3. Наличие генетического кода. Последовательность оснований в ДНК с помощью процессов транскрипции и трансляции преобразуется в последовательность аминокислот в полипептидной цепи;

4. Способность к генетической рекомбинации. Благодаря этому механизму образуются новые сочетания сцепленных генов.

  1. Генетика как наука. Основные понятия генетики: наследственность, изменчивость; аллельные гены, гомо- и гетерозиготы; признаки - доминантные, рецессивные, альтернативные; генотип, фенотип; менделирующие признаки.

Гене́тика (от греч. γενητως — происходящий от кого-то) — наука о закономерностях наследственности и изменчивости. Первоначально генетика изучала общие закономерности наследственности и изменчивости на основании фенотипических данных.

Насле́дственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены. Изменчивость — разнообразие признаков среди представителей данного вида, также свойство потомков отличаться от родительских форм. Различают несколько типов изменчивости:

Наследственную (генотипическую) и ненаследственную (фенотипическую, паратипическую).

Индивидуальную (различие между отдельными особями) и групповую (между группами особей, например, различными популяциями данного вида). Групповая изменчивость является производной от индивидуальной.

Качественную и количественную.

Направленную и ненаправленную.

Алле́ли (от греч. ἀλλήλων — друг друга, взаимно) — различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму. Гомозиго́та (др.-греч. ὅμοιος — подобный, похожий, равный; ζυγωτός — спаренный, удвоенный) — диплоидный организм или клетка, несущий идентичные аллели гена в гомологичных хромосомах. Ге́терозиго́тными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

Доминантный признак — признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Рецессивный признак — признак, не проявляющийся у гетерозиготных особей вследствие подавления проявления рецессивного аллеля.

Альтернативные признаки - это взаимоисключающие дискретные признаки, которые обычно не могут присутствовать у организма одновременно (например, желтая или зеленая окраска горошин, красная или белая окраска цветков у гороха).

Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.

Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

"Менделирующие" признаки - гены, наследуемые согласно законам наследования Менделя.

  1. Гибридологический метод, его сущность. Виды скрещиваний - моно- и полигибридное, анализирующее. Их сущность.

  1. Законы Менделя, основанные на моногибридном скрещивании. Эксперимент расписать.

  1. Гипотеза чистоты гамет, ее цитологическое обоснование.

  1. Закон Менделя, основанный на дигибридном скрещивании. Эксперимент расписать.

  1. Хромосомный механизм детерминации признаков пола.

  1. Сцепленное наследование, кроссинговер, определение расстояния между генами на эксперименте с дрозофилами. Группы сцепления, карты хромосом.

  1. Сцепленное с полом наследование. Примеры расписать.

  1. Основные положения хромосомной теории Т. Моргана.

  1. Взаимодействия аллельных генов: полное и неполное доминирование, сверхдоминирование, кодоминирование, аллельное исключение. Примеры.

  1. Специфика проявления генов в признак - экспрессивность, пенетрантность, плейотропия, генокопии.

  1. Множественный аллелизм. Группы крови человека по системе АВО (генотипы, фенотипы, наследование, правила переливания)

  1. Взаимодействие неаллельных генов - комплементарность, эпистаз, полимерия. Примеры.

  1. Резус-фактор. Его фенотипическое проявление, закономерности наследования, эффект положения генов. Правила переливания крови с учетом Rh-принадлежности. Суть резус-конфликта между организмом матери и плода.

  1. Изменчивость. Определение, формы изменчивости.

  1. Мутации. Их классификация.

  1. Генные мутации. Хромосомные мутации: аберрации, геномные мутации.

  1. Мутагены среды. Последствия мутаций для человека. Антимутационные барьеры.

  1. Комбинативная изменчивость. Ее источники, значение. Системы браков в популяциях человека.

  1. Модификационная изменчивость. Норма реакции. Фенокопии.

  1. Определение понятия "ген". Классификация генов. Современное состояние теории гена.

  1. Регуляция генной активности (экспрессия генов) у про- и эукариот.

  1. Репарация генетического материала - виды репараций. Цитоплазматическая наследственность.

  1. Размножение - универсальное свойство живого. Бесполое и половое размножение, их формы. Партеногенез.

  1. Филогенез кровеносной системы у беспозвоночных, низших и высших хордовых (позвоночных).

  1. Филогенез артериальных дуг и развитие сердца у позвоночных и некоторые филогенетически обусловленные пороки развития сердечно-сосудистой системы.

  1. Филогенез выделительной системы у позвоночных животных, некоторые филогенетически обусловленные пороки ее развития.

  1. Характеристика сложившихся в процессе эволюции типов нервной системы у животных. Филогенез головного мозга у позвоночных.

  1. Филогенетически сложившиеся типы и формы иммунного ответа. Характеристика особенностей иммунной системы позвоночных.

  1. Онтогенез, его типы и периодизация.

Онтогене́з— индивидуальное развитие организма от оплодотворения (при половом размножении) или от момента отделения от материнской особи (при бесполом размножении) до смерти.

У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез. Онтогенез делится на два периода:

эмбриональный — от образования зиготы до рождения или выхода из яйцевых оболочек;

постэмбриональный — от выхода из яйцевых оболочек или рождения до смерти организма.

Эмбриональный период:

В эмбриональном периоде выделяют три основных этапа: дробление, гаструляцию и первичный органогенез. Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, гисто- и органогенеза.

Дробление:

Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой (зародыш однослойный). При этом масса зародыша и его объем не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся все более мелкими, то есть меняются ядерно-плазменные отношения: ядро остается таким же, а объем цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце. Если желтка мало и он равномерно распределен в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится все яйцо. Если желток распределен неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком. При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы). При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окруженные небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).

Гаструляция

Гаструляция (впячивание) — гаструла формируется в результате инвагинации клеток. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.

Первичный органогенез:

Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.

В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы.

Постэмбриональное развитие:

Постэмбриональное развитие бывает прямым и непрямым.

Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих.

Непрямое развитие (личиночное развитие, развитие с метаморфозом) — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинка питается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, различных червей.

Постэмбриональное развитие сопровождается ростом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]