
- •Цель и задачи итзи
- •Демаскирующие признаки.Doc
- •03. Объекты защиты
- •04. Опознавательные признаки объектов
- •05. Признаки деятельности объектов
- •06. Видовые, сигнальные и вещественные демаскирующие признаки объектов
- •07. Информативность признаков
- •08. Особенности видовых признаков
- •09. Условия разведконтактов.Doc
- •10. Способы несанкционированного доступа к информации.Doc
- •11. Скрытое проникновение.Doc
- •12. Инициативное сотрудничество .Doc
- •13. Наблюдение.Doc
- •14. Подслушивание.Doc
- •15. Перехват.Doc
- •16. Этапы добывания информации.Doc
- •17. Вероятность обнаружения и распознавания объектов.Doc
- •18. Информационная работа.Doc
- •19. Смысл разведки.Doc
- •20. Характеристики разведки.Doc
- •21. Промышленная разведка.Doc
- •22. Коммерческая разведка.Doc
- •23. Система корпоративной разведки.Doc
- •24. Структура органов разведки.Doc
- •25,26_Система разведки.Doc
- •27. Классификация технической разведки.Doc
- •28. Принципы ведения разведки.Doc
- •29. Утечка информации, ее особенности.Doc
- •30. Канал утечки информации.Doc
- •31. Структура технического канала утечки информации.Doc
- •32. Источники сигналов.Doc
- •33. Запись информации на носитель.Doc
- •34. Функции передатчика сигнала.Doc
- •35. Среда распространения носителя.Doc
- •36. Функции приемника сигнала.Doc
- •37. Классификация технических каналов утечки информации.Doc
- •38. Характеристики рэ каналов утечки информации.Doc
- •43. Разновидности оптической разведки.Doc
- •44. Структурная схема средств наблюдения.Doc
- •46. Характеристики средств наблюдения.Doc
- •47. Назначение объективов.Doc
- •48. Фокусное расстояние.Doc
- •49. Угол поля зрения.Doc
- •50. Светосила.Doc
- •51. Просветление.Doc
- •52. Разрешающая способность.Doc
- •53. Визуально - оптические приборы.Doc
- •55. Фотографические приборы.Doc
- •56. Радиоэлектронная разведка.Doc
- •57. Первичные и вторичные излучения.Doc
- •58. Задачи рэр.Doc
- •59. Особенности рэр.Doc
- •60. Перехват электромагнитного, электрического, магнитного полей.Doc
- •61. Структура типового комплекса средств перехвата радиосигналов.Doc
- •62. Назначение антенн.Doc Антенны
- •63. Назначение и характеристики радиоприемников.Doc
- •64. Супергетеродинный приемник.Doc
- •65. Приемник прямого усиления.Doc
- •66. Радиоразведка. Характеристика и задачи.Doc
- •67. Радиолокационная разведка. Характеристики и задачи.Doc
- •68. Радиотепловая разведка. Характеристика и задачи.Doc
- •69. Побочные эми и наводки.Doc
- •70. Акустическая разведка.Doc
- •71. Задачи акустической разведки.Doc
- •72. Физические характеристики речи.Doc
- •73. Приборы применяемые для ар.Doc
- •74. Особенности гар.Doc
- •75. Особенности сейсмической разведки.Doc
- •76. Структура канала утечки акустической информации.Doc
- •77. Способы формирования акустических речевых сигналов.Doc
- •78. Способы формирования звуков речи.Doc
- •79. Характеристики речи.Doc
- •80. Звуковая волна.Doc
- •81. Технические средства перехвата акустической информации.Doc
- •82. Составные каналы утечки акустической информации.Doc
- •86. Основные типы радиоактивных излучений.Doc
- •87. Основные характеристики радиоактивности.Doc
- •90. Хим.Разведка. Определение и задачи.Doc
- •91. Аппаратура химической разведки.Doc
- •92. Основные способы анализа используемые в химической разведке.Doc
- •93. Классификация тср по видам их носителей.Doc
- •94. Характеристика закладных устройств.Doc
- •95. Характеристика космической разведки.Doc
- •96. Возможности технической разведки.Doc
- •97. Виды моделирования.Doc
- •98. Содержание моделирования объектов защиты.Doc
- •99. Моделирование угроз.Doc
- •100. Структуирование информации.Doc
- •101. Моделирование каналов несанкционированного доступа к информации.Doc
- •102. Моделирование каналов утечки информации.Doc
- •103. Оценка угрозы безопасности конфиденциальной информации по оптическим каналам.Doc
97. Виды моделирования.Doc
Различают:
- вербальные,
- физические
- математические модели
Соответственно методике производится и моделирование.
Вербальная модель описывает объект на национальном и профессиональном языках. Человек постоянно создает вербальные модели окружающей его среды и руководствуется ими при принятии решений. Чем точнее модель отображает мир, тем эффективнее при прочих равных условиях деятельность человека. На способности разных людей к адекватному моделированию окружающего мира влияют как природные (генетические) данные, так и воспитание, обучение, в том числе на основе собственного опыта, физическое и психическое состояния человека, а также мировоззренческие модели общества, в котором живет конкретный человек.
На естественном или профессиональном языке можно описать любой объект или явление. Сложные модели прошлой, настоящей или будущей жизни людей создают писатели. Но вербальные модели позволяют анализировать связи между ее элементами лишь на качественном уровне.
Физическая модель представляет материальный аналог реального объекта, который можно подвергать в ходе анализа различным воздействиям и получать количественные соотношения между этими воздействиями и результатами. Часто в качестве физических моделей исследуют уменьшенные копии крупных объектов, для изучения которых отсутствует инструментарий. Модели самолетов и авточмобилей продувают в аэродинамических трубах, макеты домов для сейсмических районов испытывают на вибростендах и т. д. Но возможности физического моделирования объектов защиты и угроз ограничены, так как трудно и дорого создать физические аналоги реальных объектов. Действительно, для того чтобы получить физическую модель канала утечки, необходимо воспроизвести его элементы, в том числе среду, а также априори неизвестные средства и действия злоумышленника.
По мере развития вычислительной математики и техники расширяется сфера применения математического моделирования. Математическое моделирование предусматривает создание и исследование математических моделей реальных объектов и процессов.
Математические модели могут разрабатываться в виде аналитических зависимостей выходов системы от входов, уравнений для моделирования динамических процессов в системе, статистических характеристик реакций системы на воздействия случайных факторов. Математическое моделирование позволяет наиболее экономно и глубоко исследовать сложные объекты, чего, в принципе, нельзя добиться с помощью вербального моделирования или что чрезмерно дорого при физическом моделировании. Возможности математического моделирования ограничиваются уровнем формализации описания объекта и степенью адекватности математических выражений реальным процессам в моделируемом объекте.
Подобные ограничения возникают при моделировании сложных систем, элементами которых являются люди. Многообразие поведения конкретного человека пока не поддается описанию на языке математических символов. Однако в статистическом смысле поведение человека более прогнозируемое и устойчивое.
Для моделирования сложных систем все шире применяется метод математического моделирования, называемый имитационным моделированием. Оно предполагает определение реакций модели системы на внешние воздействия, которые генерирует ЭВМ в виде случайных чисел. Статистические характеристики (математическое ожидание, дисперсия, вид и параметры распределения) этих случайных чисел должны с приемлемой точностью соответствовать характеристикам реальных воздействий. Функционирование системы при случайных внешних воздействиях описывается в виде алгоритма действий элементов системы и их характеристик в ответ на каждое воздействие на входе. Таким образом имитируется работа сложной системы в реальных условиях. Путем статистической обработки выходных результатов при достаточно большой выборке входных воздействий получаются достоверные оценки работы системы. Например, достаточно объективная оценка эффективности системы защиты информации при многообразии действий злоумышленников, которые с точки зрения службы безопасности носят случайный характер, возможна, как правило, на основе имитационного моделирования системы защиты.
Другое перспективное направление математического моделирования, которое представляет интерес для моделирования объектов защиты и угроз информации, — компьютерные деловые игры. Компьютерные деловые игры — аналог деловых игр людей, применяемый для решения проблем в организационных структурах. Деловая игра имитирует процесс принятия решения в сложных условиях недостаточности достоверной информации людьми, играющими роль определенных должностных лиц. Участниками компьютерной игры являются два человека или компьютер и человек. Причем за сотрудника службы выступает человек, а злоумышленника — компьютер или человек. Например, злоумышленник — компьютер устанавливает в случайном месте закладное устройство, а другой игрок — человек производит поиск закладного устройства с помощью различных выбранных средств по показаниям виртуальных приборов моделей этих средств.
Компьютерные игры по защите информации могут применяться как для анализа конкретных объектов, угроз и мер по защите, так и в качестве тренажеров для подготовки сотрудников службы безопасности.
В чистом виде каждый вид моделирования используется редко. Как правило, применяются комбинации вербального, физического и математического моделирования. С вербального моделирования начинается сам процесс моделирования, так как нельзя создать физические или математические модели, не имея образного представления об объекте и его словесного описания. Если есть возможность исследовать свойства объекта на физической модели, то наиболее точные результаты обеспечиваются при физическом моделировании. Когда создание физической модели по тем или иным причинам невозможно или чрезмерно дорого, то проводят математическое моделирование, иногда дополняя его физическим моделированием отдельных узлов, деталей, т. е. тех частей объекта, описание которых не поддается формализации.
Так как создание и исследование универсальных (позволяющих проводить всесторонние исследования) моделей является достаточно дорогостоящим и трудным делом, то в целях упрощения моделей в них детализируют только элементы и связи между ними, необходимые для решения конкретной поставленной задачи. Остальные, менее существенные для решения конкретной задачи элементы и связи укрупняют или не учитывают вовсе. В результате такого подхода экономным путем исследуются с помощью дифференцированных моделей отдельные, интересующие исследователя, свойства объекта.