
- •1. Понятия «система».
- •2. Понятия, «информация», «неопределенность»
- •3. Особенности и признаки интеллектуальных информационных систем
- •4. Функции информационных систем. Двойственная природа знаний, используемых в информационных системах
- •5. Способы объединения операционного и фактуального знания в традиционных информационных системах.
- •6. Способы объединения операционного и фактуального знания в интеллектуальных информационных системах. Сравнение с традиционными системами
- •7. Интеллектуальные информационные системы с базами данных
- •8. Интеллектуальные информационные системы, основанные на моделях
- •9.Понятия «предметная область» и «проблемная область»
- •Представление знаний.
- •Поведение.
- •10.Признаки интеллектуальности информационных систем
- •Понятие «искусственный интеллект (ии)». Задачи ии. История развития и основные этапы исследований по ии.
- •Основные направления исследований в области искусственного интеллекта (задачи)
- •13.Системы с интеллектуальным интерфейсом
- •14. Системы с естественно-языковым интерфейсом
- •15.Интеллектуальные базы данных. Гипертекстовые системы. Системы контекстной помощи
- •16. Системы когнитивной графики (общая характеристика)
- •19. Способы обучения в интеллектуальных системах
- •20. Индуктивные системы (основные понятия). Системы, основанные на прецедентах (общая характеристика)
- •21.Нейронные сети (основные понятия)
- •22.Хранилища данных
- •Дизайн хранилищ данных
- •Процессы работы с данными
- •23.Адаптивные информационные системы
- •24.Формализация и неформальные знания.Понятие “’экспертная система”.
- •25. Основные особенности экспертных систем. Основные модели представления знаний в классических экспертных системах
- •26. Структура экспертной системы
- •29. Общая характеристика математического аппарата теории нечетких множеств.
- •30. Основные идеи теории нечетких множеств. Сравнение обычных и нечетких множеств.
- •31. Операции над нечеткими множествами (кроме алгебраических)
- •33. Нечеткая и лингвистическая переменные.
- •34. Нечеткие отношения
- •35. Операции над нечеткими отношениями
- •36. Операции композиции нечетких отношений и нечеткой импликации, их значение для нечеткого логического вывода.
- •37. Нечеткий логический вывод.
- •38. Особенности нечеткого логического вывода по Мамдани и Ларсену.
- •Алгоритм Мамдани
- •40. Основные проблемы, решаемые при помощи искусственных нейронных сетей.
- •42. Понятие и основные идеи коннекционизма
- •43. Схема формального нейрона. Роль его составных частей
- •44. Функции активации формального нейрона, их смысл и основные виды.
- •1. Жесткая ступенька :
- •3. Гиперболический тангенс
- •4. Пологая ступенька
- •5. Экспонента:
- •7. Участки синусоиды:
- •8. Гауссова кривая:
- •Сравнение ветвей компьютерной эволюции
- •Архитектура нейронных сетей. Понятие, основные виды. Примеры
- •(Звезды Гроссберга, модели Липпмана-Хемминга)
- •Обучение нейронных сетей, сущность и основные алгоритмы обучения
- •Обучение нейронных сетей как задача оптимизации.
22.Хранилища данных
Хранилище данных (англ. Data Warehouse) — предметно-ориентированная информационная база данных, специально разработанная и предназначенная для подготовки отчётов и бизнес-анализа с целью поддержки принятия решений в организации. Строится на базе систем управления базами данных и систем поддержки принятия решений. Данные, поступающие в хранилище данных, как правило, доступны только для чтения. Данные из OLTP-системы копируются в хранилище данных таким образом, чтобы построение отчётов и OLAP-анализ не использовал ресурсы транзакционной системы и не нарушал её стабильность. Как правило, данные загружаются в хранилище с определённой периодичностью, поэтому актуальность данных может несколько отставать от OLTP-системы.
Принципы организации хранилища
Проблемно-предметная ориентация. Данные объединяются в категории и хранятся в соответствии с областями, которые они описывают, а не с приложениями, которые они используют.
Интегрированность. Данные объединены так, чтобы они удовлетворяли всем требованиям предприятия в целом, а не единственной функции бизнеса.
Некорректируемость. Данные в хранилище данных не создаются: т.е. поступают из внешних источников, не корректируются и не удаляются.
Зависимость от времени. Данные в хранилище точны и корректны только в том случае, когда они привязаны к некоторому промежутку или моменту времени.
Дизайн хранилищ данных
Существуют два архитектурных направления – нормализованные хранилища данных и хранилища с измерениями.
В нормализованных хранилищах, данные находятся в предметно ориентированных таблицах третьей нормальной формы. Нормализованные хранилища характеризуются как простые в создании и управлении, недостатки нормализованных хранилищ – большое количество таблиц как следствие нормализации, из-за чего для получения какой-либо информации нужно делать выборку из многих таблиц одновременно, что приводит к ухудшению производительности системы.
Хранилища с измерениями используют схему «звезда» или схему «снежинка». При этом в центре «звезды» находятся данные (Таблица фактов), а измерения образуют лучи звезды.
Процессы работы с данными
Источниками данных могут быть:
Традиционные системы регистрации операций
Отдельные документы
Наборы данных
Операции с данными:
Извлечение – перемещение информации от источников данных в отдельную БД, приведение их к единому формату.
Преобразование – подготовка информации к хранению в оптимальной форме для реализации запроса, необходимого для принятия решений.
Загрузка – помещение данных в хранилище, производится атомарно, путем добавления новых фактов или корректировкой существующих.
Анализ – OLAP, Data Mining, сводные отчёты.
Представление результатов анализа.
23.Адаптивные информационные системы
Потребность в адаптивных информационных системах возникает в тех случаях, когда поддерживаемые ими проблемные области постоянно развиваются. В связи с этим адаптивные системы должны удовлетворять ряду специфических требований, а именно:адекватно отражать знания проблемной области в каждый момент времени;быть пригодными для легкой и быстрой реконструкции при изменении проблемной среды.
Адаптивные свойства информационных систем обеспечиваются за счет интеллектуализации их архитектуры. Ядром таких систем является постоянно развиваемая модель проблемной области, поддерживаемая в специальной базе знаний - репозито-рии. Ядро системы управляет процессами генерации или переконфигурирования программного обеспечения.
В процессе разработки адаптивных информационных систем применяется оригинальное или типовое проектирование. Оригинальное проектирование предполагает разработку информационной системы с "чистого листа" на основе сформулированных требований. Реализация этого подхода основана на использовании систем автоматизированного проектирования, или CASE-технологий.
Структура адаптивной информационной системы
Подсистема обработки данных состоит из базы данных и приложения, взаимодействующего с ней. Приложение взаимодействует также с пользователем, получая от него команды, и запускает соответствующие процессы по обработке данных, которые содержат обращения к интеллектуальной подсистеме. Приложение взаимодействует с интеллектуальной подсистемой, когда необходимо выполнить действие, связанное с принятием определённого решения, или необходимо получить информацию, хранящуюся в базе знаний.
На схеме, представленной на рис. 1, база знаний представляет собой специально спроектированную базу данных. В ней хранится информация о фактах и правилах предметной области, а также структурная информация, описывающая интерпретацию фактов.
Заполняется и редактируется база знаний через «Модуль редактирования и просмотра БЗ». Через этот модуль осуществляется доступ к БЗ инженера по знаниям. Также в функции данного модуля входит контроль непротиворечивости системы правил и контроль правильности ввода новых знаний.