
- •1. Понятия «система».
- •2. Понятия, «информация», «неопределенность»
- •3. Особенности и признаки интеллектуальных информационных систем
- •4. Функции информационных систем. Двойственная природа знаний, используемых в информационных системах
- •5. Способы объединения операционного и фактуального знания в традиционных информационных системах.
- •6. Способы объединения операционного и фактуального знания в интеллектуальных информационных системах. Сравнение с традиционными системами
- •7. Интеллектуальные информационные системы с базами данных
- •8. Интеллектуальные информационные системы, основанные на моделях
- •9.Понятия «предметная область» и «проблемная область»
- •Представление знаний.
- •Поведение.
- •10.Признаки интеллектуальности информационных систем
- •Понятие «искусственный интеллект (ии)». Задачи ии. История развития и основные этапы исследований по ии.
- •Основные направления исследований в области искусственного интеллекта (задачи)
- •13.Системы с интеллектуальным интерфейсом
- •14. Системы с естественно-языковым интерфейсом
- •15.Интеллектуальные базы данных. Гипертекстовые системы. Системы контекстной помощи
- •16. Системы когнитивной графики (общая характеристика)
- •19. Способы обучения в интеллектуальных системах
- •20. Индуктивные системы (основные понятия). Системы, основанные на прецедентах (общая характеристика)
- •21.Нейронные сети (основные понятия)
- •22.Хранилища данных
- •Дизайн хранилищ данных
- •Процессы работы с данными
- •23.Адаптивные информационные системы
- •24.Формализация и неформальные знания.Понятие “’экспертная система”.
- •25. Основные особенности экспертных систем. Основные модели представления знаний в классических экспертных системах
- •26. Структура экспертной системы
- •29. Общая характеристика математического аппарата теории нечетких множеств.
- •30. Основные идеи теории нечетких множеств. Сравнение обычных и нечетких множеств.
- •31. Операции над нечеткими множествами (кроме алгебраических)
- •33. Нечеткая и лингвистическая переменные.
- •34. Нечеткие отношения
- •35. Операции над нечеткими отношениями
- •36. Операции композиции нечетких отношений и нечеткой импликации, их значение для нечеткого логического вывода.
- •37. Нечеткий логический вывод.
- •38. Особенности нечеткого логического вывода по Мамдани и Ларсену.
- •Алгоритм Мамдани
- •40. Основные проблемы, решаемые при помощи искусственных нейронных сетей.
- •42. Понятие и основные идеи коннекционизма
- •43. Схема формального нейрона. Роль его составных частей
- •44. Функции активации формального нейрона, их смысл и основные виды.
- •1. Жесткая ступенька :
- •3. Гиперболический тангенс
- •4. Пологая ступенька
- •5. Экспонента:
- •7. Участки синусоиды:
- •8. Гауссова кривая:
- •Сравнение ветвей компьютерной эволюции
- •Архитектура нейронных сетей. Понятие, основные виды. Примеры
- •(Звезды Гроссберга, модели Липпмана-Хемминга)
- •Обучение нейронных сетей, сущность и основные алгоритмы обучения
- •Обучение нейронных сетей как задача оптимизации.
15.Интеллектуальные базы данных. Гипертекстовые системы. Системы контекстной помощи
Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующие:
- “Вывести список товаров, цена которых выше среднеотраслевой”,
- “Вывести список товаров-заменителей некоторой продукции”,
- “Вывести список потенциальных покупателей некоторого товара” и т.д.
Для выполнения первого типа запроса необходимо сначала проведение статистического расчета среднеотраслевой цены по всей базе данных, а уже после этого собственно отбор данных. Для выполнения второго типа запроса необходимо вывести значения характерных признаков объекта, а затем поиск по ним аналогичных объектов. Для третьего типа запроса требуется сначала определить список посредников-продавцов, выполняющих продажу данного товара, а затем провести поиск связанных с ними покупателей.
Во всех перечисленных типах запросов требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса.
Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации графические, аудио и видео- образы.
Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).
16. Системы когнитивной графики (общая характеристика)
Когнитивная графика — это совокупность приемов и методов образного представления условий задачи, которое позволяет либо сразу увидеть решение, либо получить подсказку для его нахождения.
Поспелов сформулировал три основных задачи когнитивной компьютерной графики:
создание таких моделей представления знаний, в которых была бы возможность однообразными средствами представлять как объекты, характерные для логического мышления, так и образы-картины, с которыми оперирует образное мышление,
визуализация тех человеческих знаний, для которых пока невозможно подобрать текстовые описания,
поиск путей перехода от наблюдаемых образов-картин к формулировке некоторой гипотезы о тех механизмах и процессах, которые скрыты за динамикой наблюдаемых картин.
Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации.
Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.
17. Когнитивная графика — это совокупность приемов и методов образного представления условий задачи, которое позволяет либо сразу увидеть решение, либо получить подсказку для его нахождения.
Методы когнитивной графики используются в искусственном интеллекте в системах, способных превращать текстовые описания задач в их образные представления, и при генерации текстовых описаний картин, возникающих во входных и выходных блоках интеллектуальных систем, а также в человеко-машинных системах, предназначенных для решения сложных, плохо формализуемых задач.
Поспелов сформулировал три основных задачи когнитивной компьютерной графики:
создание таких моделей представления знаний, в которых была бы возможность однообразными средствами представлять как объекты, характерные для логического мышления, так и образы-картины, с которыми оперирует образное мышление,
визуализация тех человеческих знаний, для которых пока невозможно подобрать текстовые описания,
поиск путей перехода от наблюдаемых образов-картин к формулировке некоторой гипотезы о тех механизмах и процессах, которые скрыты за динамикой наблюдаемых картин.
Система
линейных уравнений
,
например, может быть решена без привлечения
математического аппарата. Введём систему
координат
и построим два графика, уравнениями
которых являются выражения, входящие
в систему. Решение системы задается
точкой пересечения прямых.
Применение когнитивной графики актуально в системах мониторинга и оперативного управления, в обучающих и тренажерных системах и оперативных системах принятия решений, работающих в режиме реального времени.
18. Самообучающиеся системы (общая характеристика и классификация) Основаны на методах автоматической классификации ситуаций из реальной практики, или на методах обучения на примерах. Примеры реальных ситуаций составляют так называемую обучающую выборку, которая формируется в течение определенного исторического периода. Элементы обучающей выборки описываются множеством классификационных признаков.
Стратегия «обучения с учителем» предполагает задание специалистом для каждого примера его принадлежность к определенному классу ситуаций. При обучении «без учителя» система должна самостоятельно выделять классы ситуаций. Обучение методом критики является промежуточным между первыми двумя. Предполагается, что имеется возможность только оценивать правильность работы сети и указывать желаемое направление обучения. Подобная ситуация часто встречается в системах, связанных с оптимальным управлением.
В процессе обучения проводится автоматическое построение обобщающих правил или функций, описывающих принадлежность ситуаций к классам, которыми система впоследствии будет пользоваться при интерпретации незнакомых ситуаций. В свою очередь, из обобщающих правил автоматически формируется ба за знаний, которая периодически корректируется.
Построенные в соответствии с этими принципами самообучающиеся системы имеют следующие недостатки:
• относительно низкую адекватность баз знаний возникающим реальным проблемам из-за неполноты и/или зашумленности обучающей выборки;• низкую степень объяснимости полученных результатов;• поверхностное описание проблемной области и узкую направленность применения.
Нейронные сети представляют собой классический пример технологии, основанной на примерах. Нейронные сети – обобщенное название группы математических алгоритмов, обладающих способностью обучаться на примерах, «узнавая» впоследствии черты встреченных образцов и ситуаций. Благодаря этой способности нейронные сети используются при решении задач обработки сигналов и изображений, распознавания образов, а также для прогнозирования.
В системах, основанных на прецедентах, БЗ содержит описания конкретных ситуаций (прецеденты). Поиск решения осуществляется на основе аналогий и включает следующие этапы:
• получение информации о текущей проблеме;• сопоставление полученной информации со значениями признаков прецедентов из базы знаний;• выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме;• адаптация выбранного прецедента к текущей проблеме;• проверка корректности каждого полученного решения;• занесение детальной информации о полученном решении в БЗ.
Прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. В системах, основанных на прецедентах, до пускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Наиболее эффективные решения адаптируются к реальным ситуациям с помощью специальных алгоритмов. Системы, основанные на прецедентах, применяются для распространения знаний и в системах контекстной помощи.
Информационные хранилища – это предметно-ориентированное, интегрированное, привязанное ко времени, неизменяемое собрание данных, применяемых для поддержки процессов принятия управленческих решений. Предметность означает, что данные объединены в категории и хранятся в соответствии с теми областями, которые они описывают, а не с приложениями, которые их используют. Технологии извлечения знаний из хранилищ данных основаны на методах статистического анализа и моделирования, ориентированных на поиск моделей и отношений, скрытых в совокупности данных.