
- •Кинематика поступательного движения. Вектор скорости и ускорения.
- •Вычисление пройденного пути. Средние значения
- •Кинематика вращательного движения. Связь между угловыми и линейными скоростями.
- •Кинематика вращательного движения. Связь между линейными и угловыми ускорениями.
- •Тангенциальное и нормальное ускорение.
- •6. Второй закон Ньютона как уравнение движения.
- •7. Консервативные силы. Потенциальная энергия частицы в поле. Связь между потенциальной энергией и силой поля.
- •8. Работа. Кинетическая энергия частицы.
- •21. Внутренняя энергия и теплоемкость идеального газа.
- •22. Энтропия при обратимых процессах
- •23.Электрическое поле точечного заряда. Принцип суперпозиции для вектора напряженности.
- •24. Расчет электрического поля длинной прямой равномерно заряженной нити на основе поля точечного заряда.
- •25. Поток вектора напряженности электростатического поля. Теорема Гаусса. Интегральная и дифференциальная формы.
- •41. Закон Ома для однородного проводника. Закон Ома в дифференциальной форме.
- •26. Циркуляция вектора . Потенциал.
- •27. Связь между напряженностью поля и потенциалом. Эквипотенциальные поверхности и силовые линии.
- •29. Теорема Гаусса для вектора .
- •30. Вектор (электрическое смещение). Теорема Гаусса для вектора .
- •33 Магнитное поле.Магнитная индукция. Закон Био-Савара-Лапласа
- •Теорема о потоке вектора .
- •Теорема о циркуляции вектора .
- •38.Магнитное поле в веществе. Токи намагничивания. Теорема о циркуляции вектора намагниченности .
- •Напряженность магнитного поля . Теорема о циркуляции .
- •40 Плотность энергии электромагнитного поля
- •43. Явление электромагнитной индукции. Контур движется в постоянном магнитном поле. Контур покоится в переменном магнитном поле.
26. Циркуляция вектора . Потенциал.
Электростатическое поле является потенциальным: работа кулоновских сил по перемещению заряда не зависит от формы траектории последнего ,а определяется только положением начальной и конечной точек. Если перемещать заряд по замкнутой траектории ,то работа полем не совершается.
Циркуляция вектора напряженности электростатического поля вдоль (замкнутого) контура L также равна нулю :
Где dl- элемент контура L,по направлению совпадающий с направлением обхода контура; Е1- проекция вектора Е на направление dl
Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
…
- следствие принципа суперпозиции полей (потенциалы складываются алгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
27. Связь между напряженностью поля и потенциалом. Эквипотенциальные поверхности и силовые линии.
Напряжонность и потенциал- две характеристики электростатического поля(см.рис). поскольку обе они относятся к одному и тому же физическому объекту- электростатическому полю, то между ними существует определённая связь.
Связь между потенциалом электростатического поля и его напряжённостью:
Знак «минус» показывает, что вектор Е направлен в сторону убывания потенциала.
Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии.
Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определить между двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:
Теперь дадим определение эквипотенциальной поверхности. Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Уравнение этой поверхности:
Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке
При
перемещении по этой поверхности на dl
потенциал не изменится:
Отсюда следует, что проекция вектора E на dl равна нулю, то есть El =0.Следовательно E, в каждой точке направлена по нормали к эквипотенциальной поверхности.
Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине Е , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине.
28. Вектор поляризации диэлектрика, диэлектрическая восприимчивость.
Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.
Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).
Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.
Зависимость вектора поляризации от внешнего поля
В постоянном поле
В слабых полях
В постоянном или достаточно медленно меняющемся от времени внешнем электрическом поле при достаточно малой величине напряженности этого поля, вектор поляризации P, как правило (исключение составляют сегнетоэлектрики), линейно зависит от вектора напряженности поля E:
Р=ХЕ
где — коэффициент, зависящий от химического состава, концентрации, структуры
В сильных полях
В достаточно сильных полях осложняется тем, что по мере роста напряженности электрического поля рано или поздно теряется линейность зависимости P от E.
Характер появляющейся нелинейности и характерная величина поля, с которой нелинейность становится заметной, тоже, конечно, зависит от индивидуальных свойств среды, условий итп.
В зависящем от времени поле
Зависимость вектора поляризации от быстро меняющегося во времени внешнего поля достаточно сложна. Она зависит от конкретного вида изменения внешнего поля со временем, быстроты этого изменения (или, скажем, частоты колебаний) внешнего поля, превалирующего механизма поляризации в данном веществе или среде (который тоже оказывается разным для разных зависимостей внешнего поля от времени, частот и т. д.).
Диэлектри́ческая восприи́мчивость (или поляризу́емость) вещества — физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость Хэ— коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:
где
—
электрическая постоянная;
произведение
называется
в системе СИ абсолютной диэлектрической
восприимчивостью.
В случае вакуума Хэ=0
У диэлектриков, как правило, диэлектрическая восприимчивость положительна. Диэлектрическая восприимчивость является безразмерной величиной.
Поляризуемость связана с диэлектрической проницаемостью ε соотношением: