
- •Ивановский государственный энергетический университет
- •Лекция 1
- •1. Физические основы деформационного упрочнения металлов
- •1.1 Параметры состояние поверхностного слоя деталей машин
- •Субструктура
- •Задание 1.1
- •2.2 Образование и размножений дислокаций
- •Задание 2.1
- •3.2. Физические основы разрушения металлов
- •Задание 3.1
- •4.2.2 Водородное охрупчивание
- •4.2.3 Отличия водородного изнашивания от водородного охрупчивания
- •4.2.4 Методы уменьшения и предупреждения водородного изнашивания
- •4.3 Абразивное изнашивание
- •4.4 Окислительное изнашивание
- •4.5 Изнашивание вследствие пластической деформации
- •4.6 Изнашивание вследствие диспергирования
- •4.7 Изнашивание в результате выкрашивания вновь образуемых структур
- •4.8 Коррозия
- •4.9 Кавитационное изнашивание
- •4.9.1 Гидродинамическое изнашивание
- •4.9.2 Вибрационная кавитация
- •4.10 Эрозионное изнашивание
- •4.11 Схватывание и заедание поверхностей при трении
- •4.12 Изнашивание при фреттинг- коррозии
- •4.13 Трещинообразование на поверхности трения
- •4.13.1 Усталостное изнашивание
- •4.13.2 Трещинообразование термического происхождения
- •4.14 Избирательный перенос при трении
- •4.14.1 Использование избирательного переноса в узлах машин
- •Задание 4.1
- •5.2 Классификация методов отделочно-упрочняющей обработки деталей машин
- •5.2.1 Упрочнение с созданием пленки на поверхности
- •5.2.2 Упрочнение с изменением химического состава поверхностного слоя металла
- •6.2. Расчет глубины деформационного упрочнения поверхностного слоя
- •6.2.1 Расчет приближенного значения накопленной деформации поверхностного слоя
- •Задание 6.1
- •Задание 6.2
- •Лекция 7
- •7. Алмазное выглаживание
- •7.1 Силы, возникающие при алмазном выглаживании
- •7.2 Трение и смазка
- •7.3 Инструменты для выглаживания
- •7.4 Вибровыглаживание
- •Задание 7.1
- •8.2 Азотирование
- •8.3 Термодиффузионное хромирование
- •8.4 Силицирование
- •8.5 Оксидирование
- •8.6 Фосфатирование
- •8.7 Сульфидирование
- •8.8 Гальванические покрытия поверхностей деталей машин
- •8.8.1 Электрическое хромирование
- •8.8.2 Железнение
- •8.9 Электромеханический способ упрочнения детали
- •Задание 8.1
- •9.1 Лазерное упрочнение
- •9.1.1 Лазерная наплавка
- •9.1.2 Лазерное оборудование
- •9.2 Электронно-лучевая обработка
- •9.2.1 Электронно-пучковое оборудование
- •9.3 Методы детонационного и плазменного нанесения покрытий
- •9.3.1 Оборудование для детонационного нанесения покрытия
- •9.3.2 Плазменное поверхностное упрочнение деталей
- •9.3.3 Оборудование для плазменного упрочнения деталей
- •Техническая характеристика установки мпу-4:
- •9.3.4 Технологические варианты плазменного упрочнения деталей
- •Задание 9.1
- •10.2 Ионное распыление
- •10.3 Магнетронное распыление
- •10.4 Ионное осаждение покрытий
- •10.5 Ионно-диффузионное насыщение
- •10.6 Ионное легирование (имплантация)
- •Задание 10.1
- •Задание 10.2
- •Лекция 11
- •11. Магнитное упрочнение деталей машин
- •11.1 Методы магнитной обработки
- •11.2 Сущность магнитной обработки
- •Задание 11.1
- •12.1.1 Выбор материалов для трущихся деталей
- •12.1.2 Выбор материалов при конструировании узлов трения
- •12.1.3 Числовые критерии работоспособности материалов в парах трения
- •12.1.4 Правила сочетания материалов
- •12.1.5 Пористость материала
- •12.1.6 Расположение материалов пар трения по твердости
- •12.1.7 Замена в узлах машин трения скольжения трение качения
- •12.1.8 Учет температурных деформаций детали
- •12.1.9 Способы установки узлов, уменьшающие дополнительные нагружения при монтаже и в эксплуатации
- •12.1.10 Защита рабочих поверхностей пар трения от загрязнения
- •12.2 Методы повышения износостойкости деталей и узлов трения машин в эксплуатации
- •12.2.1 Изменение свойств смазочного материала при эксплуатации
- •12.2.2 Отложения на деталях и в смазочной системе
- •12.2.3 Пенообразование
- •12.2.4 Обкатка машин
- •Задание 12.1
- •Ответ 5.1
- •Ответ 7.3
- •Ответ 11.2
- •Ответ 12.1
- •Ответ 12.2
9.1 Лазерное упрочнение
Основой процесса лазерного упрочнения является быстрый нагрев до высокой температуры (температуры плавления) поверхностного слоя металла с последующим быстрым охлаждением путем отвода тепла в основной объем металла, который остается практически холодным.
В принципе необходимое повышение температуры металла можно получить и стандартными методами- нагревом в термической или индукционной печи. Однако эти методы часто являются непригодными из-за неоднородности нагрева. Кроме того в крупногабаритных деталях очень часто необходимо закалить только часть поверхности, а не весь объем детали. Сделать можно только лазерной обработкой (термообработкой), которая может проводится с оплавлением и без оплавления поверхностного слоя. Чаще всего используют обработку без оплавления с сохранением исходной шероховатости Ra=0,16- 1,25мкм. Глубина упрочняемого слоя металла определяется величиной допустимого линейного износа.
Производительность лазерного упрочнения определяется:
.
где: К- коэффициент перекрытия;
V- скорость движения луча (детали);
d0- диаметр пучка (ширина дорожки упрочнения), d0= 1-1,5 мм. И более.
Возможна обработка перекрывающимися и неперекрывающимися дорожками. При наложении дорожки упрочнения происходит частичный нагрев предыдущей упрочненной зоны, что может привести к отпуску и снижению твердости. При обработке неперекрывающимися дорожками зазор между ними составляет 10-30% от площади обрабатываемой поверхности.
Уменьшение износа в 2-3 раза.
Применение: коленчатые валы двигателей, гильзы цилиндров, зубчатые колеса, детали химического, нефтяного и бурового оборудования.
9.1.1 Лазерная наплавка
Лазерная наплавка порошковых материалов обеспечивает получение наплавленного слоя высокой степени однородности и качества без значительно термического влияния на нижележащие слоя металла.
Применяют порошки хрома, бора, никеля, кремния
Сущность процесса наплавки заключается в нанесении на поверхность детали слоя порошка и последующего его расплавления лучом лазера. Порошок диффундирует в основной металл, а быстрое остывание позволят получить однородную структуру поверхностного слоя. После последующей шлифовки толщина наплавки может достигать 0,2-0,4 мм., повышение износостойкости в 2-3 раза.
9.1.2 Лазерное оборудование
Лазерная установка, предназначена для поверхностного упрочнения металла, содержит в качестве основных элементов лазер с блок питания, оптическую систему для транспортировки и фокусирования лазерного луча, систему позиционирования обрабатываемой детали, систему управления и контроля параметров обработки.
Лазеры могут быть электроразрядные СО2- лазеры и твердотельные Nd- лазеры.
Электоразрядные СО2- лазеры имеют большую длину волны (10,6 мкм.), электоразрядные возбуждения, прокачку газовой смеси ( СО2, N2, He) по замкнутому контуру. Используются для непрерывной обработки. Мощность 1-25 кВт. Твердотельные Nd- лазеры работают от активного элемента в виде стержня или пластины. Могут работать в прерывистом и непрерывном режимах. Мощность до 200 Вт. Созданы до 3 кВт. Длина волны менее 10,6 мкм и следовательно более высокое поглощение в металле. Можно использовать транспортировку луча по световолокнам. Применение предпочтительное.