Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Новый документ.doc
Скачиваний:
2
Добавлен:
26.09.2019
Размер:
632.83 Кб
Скачать

7.Угол падения равен углу отражения.

8.Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — < 5·10−3 нм и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.

Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена.

Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

  • Фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным).

  • Комптон-эффект — гамма-квант рассеивается при взаимодействии с электроном, при этом образуется новый гамма-квант, меньшей энергии, что также сопровождается высвобождением электрона и ионизацией атома.

  • Эффект образования пар — гамма-квант в поле ядра превращается в электрон и позитрон.

  • Ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра.

Аннигиля́ция (лат. Annihilatio — уничтожение) — в физике реакция превращения частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных.

9.Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.Определение волны. Волна (волновой процесс) - процесс распространения колебаний в сплошной среде. При распростаранении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.Скорость распространения электромагнитных волн. Свойства электромагнитных волн

1. Из теории Максвелла вытекает, что если в какой-либо малой области пространства периодически изменять электрическое и магнитное поля, то эти изменения должны периодически повторяться и во всех других точках пространства, причем в каждой последующей несколько позже, чем в предыдущей, т.е. от источника электромагнитных колебаний должны во все стороны распространяться электромагнитные волны с определенной скоростью. Вывод о конечности скорости распространения электромагнитных волн — очень важное следствие из теории Максвелла.

Дж. Максвелл чисто математически показал, что скорость распространения электромагнитного поля в вакууме равна скорости света а в среде эта скорость ν меньше и зависит от свойств среды:

где ε — диэлектрическая проницаемость среды, μ — магнитная проницаемость среды.

2. При распространении электромагнитных волн в каждой точке пространства происходят периодически повторяющиеся изменения электрического и магнитного полей. Эти изменения удобно изображать в виде колебаний векторов напряженности электрического поля и индукции магнитного поля в каждой точке пространства. Электромагнитная волна — поперечная волна, так как

и

3. Колебания векторов и в каждой точке электромагнитной волны происходят в одинаковых фазах и по двум взаимно перпендикулярным направлениям: в каждой точке пространства.

4. Векторы и образуют с вектором скорости распространения правовинтовую систему (рис. 2): если головку правого винта расположить в плоскости векторов к и поворачивать ее в направлении от к по кратчайшему пути, то поступательное движение острия винта укажет направление вектора в момент времени t.

и изменяются только и к при переходе от одной среды к другой.

6. Электромагнитная волна, как и упругая, является носителем энергии, причем перенос энергии совершается в направлении распространения волны. Энергию электромагнитной волны можно рассчитать по формуле

где V — объем среды, в котором сосредоточена электромагнитная волна.

Переносимая энергия пропорциональна четвертой степени частоты. Поэтому источником интенсивных электромагнитных волн, способных переносить электромагнитную энергию на значительные расстояния, должны быть электромагнитные колебания очень высокой частоты (порядка миллиона герц). Понятно, что никакие механические генераторы не могут создать переменный ток частотой -106 Гц (для этого якорь должен был бы совершать 106оборотов в 1 с). Источником электромагнитных волн такой частоты может быть только колебательный контур.

7. Электромагнитные волны распространяются прямолинейно в однородной среде, испытывают преломление при переходе из одной среды в другую, отражаются от преград. Для них характерны явления дифракции и интерференции.

10.Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: , где — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

12.Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получилНобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк в 1900 годупредположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:

где — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), — кинетическая энергия вылетающего электрона, — частота падающего фотона с энергией , h — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже не достаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.

Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю