Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Некоторый материал.doc
Скачиваний:
5
Добавлен:
26.09.2019
Размер:
555.01 Кб
Скачать

2. Пуассоновский процесс

Пуассоновский процесс можно рассматривать с различных точек зрения, и здесь мы рассмотрим его в качестве прототипа всех процессов из этой главы. Последующий вывод распределения Пуассона наилучшим образом подходит для наших обобщений, однако он никоим образом не является лучшим и в других контекстах.

В качестве эмпирических предпосылок возьмем такие случайные события, как распад частиц, поступающие телефонные вызовы, расщепление хромосом под воздействием вредной радиации. Предполагается, что все наблюдаемые события однотипны, и мы интересуемся полным числом событий, происшедших в течение произвольного интервала времени длины . Каждое событие представляется точкой на оси времени, и поэтому мы в действительности рассматриваем некоторые случайные размещения точек на прямой. Лежащие в основе нашей математической модели физические предположения состоят в том, что силы и воздействия, управляемые процессом, остаются постоянными, так, что вероятность любого отдельного события одна и та же для всех интервалов времени продолжительности и не зависит от прошлого развития процесса. Математически это означает, что наш процесс является однородным по времени марковским процессом в смысле, описанном в предыдущем параграфе. Как уже говорилось, мы не стремимся к полной теории таких процессов, а удовольствуемся выводом основных вероятностей

. (2.1)

Они могут быть выведены из простых постулатов без обращения к более глубоким теоретическим соображениям.

Чтобы ввести понятия, подходящие и для других процессов из этой главы, мы выберем начало отсчета времени и будем говорить, что в момент времени система находится в состоянии , если между 0 и произошло ровно скачков функции . Тогда равняется вероятности состояния в момент , однако может быть также описана как вероятность перехода из произвольного состояния в произвольный момент времени в состояние к моменту . Теперь наше нестрогое описание процесса мы преобразуем в свойства вероятностей .

Разобьем временной интервал единичной длины на подинтервалов длины . Вероятность скачка внутри любого из этих подинтервалов равна , и поэтому математическое ожидание числа интервалов, содержащих скачки, равно . Интуитивно представляется, что при это число должно стремиться к математическому ожиданию числа скачков внутри произвольного интервала времени единичной длины, и поэтому естественно предположить, что существует число такое, что

. (2.2)

Физическая картина процесса требует также, чтобы скачок обязательно приводил из состояния в соседнее состояние , и отсюда вытекает, что математическое ожидание числа подинтервалов (длины ), содержащих более чем один скачок, должно стремиться к 0. Поэтому мы должны предположить, что при

. (2.3)

Чтобы окончательно сформулировать постулаты, запишем (2.2) в виде , где (как обычно) обозначает величину, по порядку меньшую чем . (Точнее говоря, означает такую величину, что при ). С учетом этого (2.3) эквивалентно соотношению . Сформулируем теперь следующие постулаты.

Постулаты пуассоновского процесса. Процесс начинается в момент времени 0 в состоянии ( ). Непосредственный переход из состояния возможен только в состояние ( ). Каково бы ни было состояние процесса в момент времени , (условная) вероятность скачка внутри последующего короткого интервала времени между и равна , тогда как (условная) вероятность наличия в нем более чем одного скачка есть .

Как было объяснено в предыдущем параграфе, эти условия слабее нашего исходного предположения об отсутствии влияния прошлой истории процесса на его будущую эволюцию. С другой стороны, наши постулаты носят чисто аналитический характер, и их достаточно, чтобы показать, что мы должны иметь

. (2.4)

Для доказательства этого возьмем сперва и рассмотрим событие, состоящее в том, что в момент времени система находится в состоянии . Вероятность этого события равна , и осуществиться оно может тремя взаимоисключающими способами.

Во-первых, в момент времени система может находиться в состоянии , и между и не произойдет ни одного скачка. Вероятность этой возможности равна

.

Вторая возможность состоит в том, что в момент времени система находится в состоянии и между и происходит в точности один скачок. Вероятность этого равна .

Любое другое состояние в момент более одного скачка в интервале между и , и вероятность подобного события есть .

Следовательно, мы должны иметь

, (2.5)

а это соотношение можно переписать в виде

. (2.6)

При последний член стремится к нулю; следовательно, предел левой части существует и равен

. (2.7)

При вторая и третья из упомянутых выше возможностей не возникают, и поэтому (2.5) следует заменить на

, (2.8)

что приводит к

. (2.9)

Отсюда и из получаем . Подставляя это значение в (2.7) при , мы получим обыкновенное дифференциальное уравнение для . Поскольку , мы легко находим, что , а это полностью согласуется с (2.4). Продолжая таким же образом, мы последовательно находим все члены (2.4).

Список литературы:

1. Феллер В. Введение в теорию вероятностей и ее приложения. Т. 1. – М.: Мир, 1984.

1. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения – М.: Высш. шк., 2007