
- •Математические модели и их виды. Классификация моделей
- •Экстемум функций многих переменных. Линии уровня. Градиент. Условный экстремум
- •Постановка и свойства задачи линейного программирования. Геометрическая интерпретация.
- •Симплекс- метод решения задачи линейного программирования
- •Двойственная задача линейного программирования, ее интерпретация и свойства
- •Транспортная задача и ее математическая модель. Определение опорного плана транспортной задачи
- •Определение оптимального плана транспортной задачи методом потенциалов. Приемы решения методом потенциалов транспортных задач
- •Геометрическая и экономическая интерпретация задач нелинейного программирования. Метод множителей Лагранжа. Возможности численного решения нелинейных и целочисленных задач
- •Основные понятия и общая характеристика задач динамического программирования, их геометрическая и экономическая интерпретация. Нахождение решение задач методом динамического программирования
- •Оптимизационные задачи, решаемые при помощи графов. Алгоритмы на графах
- •Нахождение максимального и минимального пути в графе. Решение транспортной задачи с помощью графов
- •Основные понятия теории массового обслуживания. Компоненты и классификация моделей систем массового обслуживания
- •Определение характеристик систем массового обслуживания. Марковский процесс. Уравнения Колмогорова
- •Одноканальные и многоканальные смо с пуассоновским входным потоком и экпотенциальным распределением длительности обслуживания
- •Основные количественные характеристики простейшего потока.
- •Распределение интервала времени t между произвольными двумя соседними событиями простейшего потока.
- •Одноканальная смо с отказами и ее характеристики
- •Многоканальная смо с отказами и ее характеристики
- •Одноканальная смо с ожиданием и его характеристики. Формула Литтла
- •Многоканальное смо с ожиданием и ее характеристики. Формула Литтла
- •Простейшие задачи решаемые методом имитационного моделирования. Теоретические основы метода имитационного моделирования
- •Моделирование смо с использованием метода Монте- Карло
- •Имитация процессов, происходящих во времени. Основная идея и методы прогнозирования. Количественные методы прогноза. Прогнозирование временных рядов. Модель линейной регрессии
- •Предмет теории игр, основные понятия. Матричные игры. Цны, доминирующие и оптимальные стратегии игр. Принцип минмакса. Решение задач теории игр в чистых стратегиях
- •Стратегические игры в смешанных стратегиях. Основная теорема теории игр. Решение задачи в смешанных стратегиях методами линейного программирования
- •Оценка сложных систем в условиях неопределенности. Матрица рисков. Критерии: Байеса, Лапласа, Вальда, Сэвиджа, Гурвица.
Геометрическая и экономическая интерпретация задач нелинейного программирования. Метод множителей Лагранжа. Возможности численного решения нелинейных и целочисленных задач
Графический метод можно использовать для решения задачи НП, которая содержит две переменных х1 и х2, например задачи следующего вида:
Чтобы найти ее оптимальное решение, нужно выполнить следующие действия:
1. Найти ОДР, определяемую ограничениями задачи. Если окажется, что эта область пуста, то это означает, что задача не имеет решения.
2. Построить семейство линий уровня целевой функции f(х1, х2) = C при различных значениях числового параметра С.
3. При решении задачи на минимум определить направление убывания, а для задачи на максимум — направление возрастания линий уровня ЦФ.
4. Найти точку ОДР, через которую проходит линия уровня с наименьшим в задаче на минимум (соответственно, наибольшим в задачи на максимум) значением параметра С. Эта точка будет оптимальным решением. Если ЦФ не ограничена снизу в задаче на минимум (сверху — в задаче на максимум), то это означает, что задача не имеет оптимального решения.
5. Найти координаты точки оптимума и определить в ней значение ЦФ.
Отметим, что в отличие от задачи ЛП точка оптимума в задаче НП не обязательно находится на границе ОДР. Ею также может быть внутренняя точка этого множества.
Метод множителей Лагранжа, метод нахождения условного экстремума функции
Описание метода:
Составим функцию Лагранжа в виде линейной комбинации функции
Составим
систему из
уравнений,
приравняв к нулю частные
производные функции
Лагранжа
Если
полученная система имеет решение
относительно параметров
и
,
тогда точка
может
быть условным экстремумом, то есть
решением исходной задачи. Заметим, что
это условие носит
необходимый, но не достаточный характер.
Обоснование.
Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.
Применение
Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
Основной метод решения задачи об оптимизации качества кодирования аудио и видео данных при заданном среднем битрейте.
Основные понятия и общая характеристика задач динамического программирования, их геометрическая и экономическая интерпретация. Нахождение решение задач методом динамического программирования
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой (англ.), выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.
Метод динамического программирования сверху — это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.
динамическое программирование пользуется следующими свойствами задачи:
перекрывающиеся подзадачи;
оптимальная подструктура;
возможность запоминания решения часто встречающихся подзадач.
Динамическое программирование обычно придерживается двух подходов к решению задач:
нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.
восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.
Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme, Common Lisp, Perl), а в некоторых требует дополнительных расширений (C++).
Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций, и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах.
Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных — просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах.
Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность. Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.