
- •1.Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.
- •2.Электрическое поле. Закон Кулона. Диэлектрическая проницаемость.
- •4.Работа в электростатическом поле. Потенциальная энергия поля. Потенциальность поля.
- •5.Потенциал. Разность потенциалов. Связь между напряжением и напряженностью
- •7.Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия электрического поля
- •8.Последовательное и параллельное соединение конденсаторов
- •9.Электрический ток. Условия существования эл.Тока. Сила тока и плотность тока
- •10.Закон Ома для участка цепи. Сопротивление. Зависимость сопротивления проводника от температуры
- •11.Последовательное и параллельное сопротивление проводников
- •12.Работа и мощность электрического поля. Закон Джоуля-Ленца
- •13.Электродвижущая сила. Закон Ома для замкнутой цепи
- •14.Магнитное поле. Индукция магнитного поля. Магнитные силовые линии. Взаимодействие параллельных токов
- •15.Проводник с током в магнитном поле
- •16.Сила Лоренца. Движение заряженной частицы в магнитном поле
- •17.Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции и правило Ленца
- •18.Эдс индукции в движущихся проводниках в магнитном поле. Вихревое электрическое поле
- •19.Самоиндукция. Индуктивность. Эдс самоиндукции. Энергия магнитного поля
- •20.Колебательное движение. Гармонические колебания и их характеристики.
- •21.Пружинный и математический маятники. Энергетические превращения при их колебаниях.
- •22.Свободные электромагнитные колебания в колебательном контуре. Энергетические превращения в колебательном контуре. Формула Томпсона
- •23.Вынужденные электрические колебания. Переменный ток и его характеристики
- •24.Получение переменного тока при вращении витка в магнитном поле. Генератор переменного тока.
- •25.Передача и распределение электроэнергии. Устройство и принцип действия трансформатора
- •26.Электромагнитное поле. Электромагнитные волны и их свойства. Принципы радиосвязи. Радиолокация
- •27.Электромагнитная природа света. Скорость света. Зависимость между длиной световой волны и частотой электромагнитных колебаний
- •28.Интерференция света. Когерентность и монохроматичность
- •29.Дифракция света. Дифракционная решетка
- •30.Отражение и преломление света. Полное внутреннее отражение света
- •31.Дисперсия света. Разложение белого света призмой
- •32.Преломление света в линзах
- •33.Экспериментальные основы теории относительности. Постулаты Энштейна. Следствия из постулат
- •34.Зависимость массы от скорости в сто. Закон взаимосвязи массы и энергии
- •35.Гипотеза Планка. Фотон и его свойства. Корпускулярно-волновой дуализм
- •36.Внешний фотоэффект и его законы. Уравнение Энштейна для фотоэффекта
- •37.Опыты Резерфорда. Планетарная модель атома
- •38.Квантовые постулаты Бора. Оптические спектры. Излучение и поглощение энергии атомами. Строение атома водорода по Борну
- •39.Тепловое равновесие. Температура. Тепловое расширение тел. Измерение температуры
- •40. Идеальный газ. Уравнение состояния идеального газа
- •41.Газовые законы. Применение газов в технике
- •42.Внутренняя энергия идеального газа
- •43.Работа в термодинамике – ебала какая-то
- •44.Количество теплоты
- •45.Первое начало термодинамики. Применение 1 начала термодинамики к изопроцессам в идеальных газах
- •46.Второе начало термодинамики. Тепловые двигатели. Кпд тепловых двигателей. Цикл Карно. Максимальный кпд тепловых двигателей
- •47.Основные положения молекулярно-кинетической теории вещества, и их опытное доказательство. Диффузия и броуновское движение
- •48.Размеры и масса молекул. Постоянная Авогадро
- •49.Силы взаимодействия молекул. Особенности внутреннего строения газов, жидкостей и твердых тел
- •50.Давление газа. Основное уравнение молекулярно-кинетической теории
- •51.Насыщенный пар и его свойства. Кипение жидкости
- •52.Влажность воздуха. Абсолютная и относительная влажность. Приборы для измерения влажности
- •53.Поверхностное натяжение. Смачивание. Капиллярные явления
- •54.Характеристики твердого состояния вещества. Кристаллы. Строение и свойства кристаллических веществ. Аморфные тела
- •55.Деформация. Виды деформации. Механическое напряжение. Закон Гука. Диаграмма напряжений и ее характеристики
- •56.Электрический ток в полупроводниках. Собственная и примесная проводимости. Электронно-дырочный переход. Полупроводниковый переход
- •57.Электрический ток в электролитах. Законы Фарадея
- •58.Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Различные типы самостоятельного разряда и их техническое применение
- •59.Электрический ток в вакууме. Электронные лампы
- •60.Магнитная проницаемость вещества. Три класса магнитных веществ
- •61.Радиоактивность. Альфа- бета- и гамма распады. Закон радиоактивного распада
- •62.Биологическое действие радиоактивного излучения
- •63.Состав атомного ядра. Масса и энергия атомных ядер. Ядерные силы
- •64.Ядерные реакции. Энергетический выход ядерных реакций
- •65.Деление тяжелых атомных ядер. Ядерные реакторы. Ядерная энергетика и экологические проблемы
64.Ядерные реакции. Энергетический выход ядерных реакций
Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях. Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:
При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (то есть числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц. Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы).
Превращения ядер сопровождается изменением их внутренней энергии (энергии связи).
Разность сумм энергии покоя ядер и частиц до реакции и после реакции называется энергетическим выходом ядерной реакции.
Расчет энергетического выхода ядерной реакции:
- рассчитать сумму масс (m1) ядер и частиц до реакции;
- рассчитать сумму масс ( m2) ядер и частиц после реакции;
- рассчитать изменение массы
- рассчитать энергетический выход реакции, т.е. изменение энергии равно произведению изменения массы на квадрат скорости света.
65.Деление тяжелых атомных ядер. Ядерные реакторы. Ядерная энергетика и экологические проблемы
Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.
Процесс
деления может протекать только в том
случае, когда потенциальная энергия
начального состояния делящегося ядра
превышает сумму масс осколков деления.
Поскольку удельная энергии связи
тяжёлых ядер уменьшается с увеличением
их массы, это условие выполняется почти
для всех ядер с массовым числом
.
Однако, как показывает опыт, даже самые тяжёлые ядра делятся самопроизвольно с очень малой вероятностью. Это означает, что существует энергетический барьер (барьер деления), препятствующий делению. Для описания процесса деления ядер, включая вычисление барьера деления, используется несколько моделей, но ни одна из них не позволяет объяснить процесс полностью.
Ядерный реактор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор в мире, «Чикагскую поленницу-1» (англ. Chicago Pile-1), запустили под трибунами университетского стадиона в 1942 году сотрудники Чикагского университета под руководством Энрико Ферми, в рамках проекта Манхэттен по разработке ядерного оружия. Спустя 4 года в Лаборатории № 2 Академии наук СССР по руководством Курчатова с теми же целями был пущен первый в Европе реактор Ф1. Первая в мире атомная электростанция в Обнинске с энергетическим реактором АМ-1 была запущена 1954 году.
Ядерные реакторы — весьма разнообразные по конструкции и областям применения устройства. По характеру использования реакторы можно условно разделить на:
-исследовательские (экспериментальные) реакторы, диапазон применения которых весьма широк: например реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований и физических экспериментов в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе материалов ядерных реакторов), для производства изотопов;
-изотопные (оружейные, промышленные) реакторы, используемые для наработки изотопов, используемых в ядерных вооружениях, например 239Pu, к ним относят реакторы-конвертеры и реакторы-размножители;
-энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения воды;
-транспортные реакторы для привода силовых установок кораблей и подводных лодок.