
- •1.Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.
- •2.Электрическое поле. Закон Кулона. Диэлектрическая проницаемость.
- •4.Работа в электростатическом поле. Потенциальная энергия поля. Потенциальность поля.
- •5.Потенциал. Разность потенциалов. Связь между напряжением и напряженностью
- •7.Электроемкость. Конденсаторы. Емкость плоского конденсатора. Энергия электрического поля
- •8.Последовательное и параллельное соединение конденсаторов
- •9.Электрический ток. Условия существования эл.Тока. Сила тока и плотность тока
- •10.Закон Ома для участка цепи. Сопротивление. Зависимость сопротивления проводника от температуры
- •11.Последовательное и параллельное сопротивление проводников
- •12.Работа и мощность электрического поля. Закон Джоуля-Ленца
- •13.Электродвижущая сила. Закон Ома для замкнутой цепи
- •14.Магнитное поле. Индукция магнитного поля. Магнитные силовые линии. Взаимодействие параллельных токов
- •15.Проводник с током в магнитном поле
- •16.Сила Лоренца. Движение заряженной частицы в магнитном поле
- •17.Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции и правило Ленца
- •18.Эдс индукции в движущихся проводниках в магнитном поле. Вихревое электрическое поле
- •19.Самоиндукция. Индуктивность. Эдс самоиндукции. Энергия магнитного поля
- •20.Колебательное движение. Гармонические колебания и их характеристики.
- •21.Пружинный и математический маятники. Энергетические превращения при их колебаниях.
- •22.Свободные электромагнитные колебания в колебательном контуре. Энергетические превращения в колебательном контуре. Формула Томпсона
- •23.Вынужденные электрические колебания. Переменный ток и его характеристики
- •24.Получение переменного тока при вращении витка в магнитном поле. Генератор переменного тока.
- •25.Передача и распределение электроэнергии. Устройство и принцип действия трансформатора
- •26.Электромагнитное поле. Электромагнитные волны и их свойства. Принципы радиосвязи. Радиолокация
- •27.Электромагнитная природа света. Скорость света. Зависимость между длиной световой волны и частотой электромагнитных колебаний
- •28.Интерференция света. Когерентность и монохроматичность
- •29.Дифракция света. Дифракционная решетка
- •30.Отражение и преломление света. Полное внутреннее отражение света
- •31.Дисперсия света. Разложение белого света призмой
- •32.Преломление света в линзах
- •33.Экспериментальные основы теории относительности. Постулаты Энштейна. Следствия из постулат
- •34.Зависимость массы от скорости в сто. Закон взаимосвязи массы и энергии
- •35.Гипотеза Планка. Фотон и его свойства. Корпускулярно-волновой дуализм
- •36.Внешний фотоэффект и его законы. Уравнение Энштейна для фотоэффекта
- •37.Опыты Резерфорда. Планетарная модель атома
- •38.Квантовые постулаты Бора. Оптические спектры. Излучение и поглощение энергии атомами. Строение атома водорода по Борну
- •39.Тепловое равновесие. Температура. Тепловое расширение тел. Измерение температуры
- •40. Идеальный газ. Уравнение состояния идеального газа
- •41.Газовые законы. Применение газов в технике
- •42.Внутренняя энергия идеального газа
- •43.Работа в термодинамике – ебала какая-то
- •44.Количество теплоты
- •45.Первое начало термодинамики. Применение 1 начала термодинамики к изопроцессам в идеальных газах
- •46.Второе начало термодинамики. Тепловые двигатели. Кпд тепловых двигателей. Цикл Карно. Максимальный кпд тепловых двигателей
- •47.Основные положения молекулярно-кинетической теории вещества, и их опытное доказательство. Диффузия и броуновское движение
- •48.Размеры и масса молекул. Постоянная Авогадро
- •49.Силы взаимодействия молекул. Особенности внутреннего строения газов, жидкостей и твердых тел
- •50.Давление газа. Основное уравнение молекулярно-кинетической теории
- •51.Насыщенный пар и его свойства. Кипение жидкости
- •52.Влажность воздуха. Абсолютная и относительная влажность. Приборы для измерения влажности
- •53.Поверхностное натяжение. Смачивание. Капиллярные явления
- •54.Характеристики твердого состояния вещества. Кристаллы. Строение и свойства кристаллических веществ. Аморфные тела
- •55.Деформация. Виды деформации. Механическое напряжение. Закон Гука. Диаграмма напряжений и ее характеристики
- •56.Электрический ток в полупроводниках. Собственная и примесная проводимости. Электронно-дырочный переход. Полупроводниковый переход
- •57.Электрический ток в электролитах. Законы Фарадея
- •58.Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Различные типы самостоятельного разряда и их техническое применение
- •59.Электрический ток в вакууме. Электронные лампы
- •60.Магнитная проницаемость вещества. Три класса магнитных веществ
- •61.Радиоактивность. Альфа- бета- и гамма распады. Закон радиоактивного распада
- •62.Биологическое действие радиоактивного излучения
- •63.Состав атомного ядра. Масса и энергия атомных ядер. Ядерные силы
- •64.Ядерные реакции. Энергетический выход ядерных реакций
- •65.Деление тяжелых атомных ядер. Ядерные реакторы. Ядерная энергетика и экологические проблемы
57.Электрический ток в электролитах. Законы Фарадея
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.
Прохождение
электрического тока через электролит
сопровождается выделением веществ на
электродах. Это явление получило
название электролиза. Электрический
ток в электролитах представляет собой
перемещение ионов обоих знаков в
противоположных направлениях.
Положительные ионы движутся к
отрицательному электроду (катоду),
отрицательные ионы – к положительному
электроду (аноду). Ионы обоих знаков
появляются в водных растворах солей,
кислот и щелочей в результате расщепления
части нейтральных молекул. Это явление
называется электролитической
диссоциацией. Например, хлорид меди
CuCl2 диссоциирует в водном растворе на
ионы меди и хлора:
Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит: m = kQ = kIt.
Величину k называют электрохимическим эквивалентом. Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:
Здесь
m0 и q0 – масса и заряд одного иона,
– число ионов, пришедших к электроду
при прохождении через электролит заряда
Q. Таким образом, электрохимический
эквивалент k равен отношению массы m0
иона данного вещества к его заряду q0.
Так как заряд иона равен произведению
валентности вещества n на элементарный
заряд e (q0 = ne), то выражение для
электрохимического эквивалента k можно
записать в виде
Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества, F = eNA – постоянная Фарадея. F = eNA = 96485 Кл / моль.
Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества. Закон Фарадея для электролиза приобретает вид:
58.Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Различные типы самостоятельного разряда и их техническое применение
Электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду. Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.На электродах происходит нейтрализация заряженных частиц, как и при прохождении электрического тока через растворы и расплавы электролитов. Однако в газах отсутствует выделение веществ на электродах, как это имеет место в растворах электролитов. Газовые ионы, подойдя к электродам, отдают им свои заряды, превращаются в нейтральные молекулы и диффундируют обратно в газ.
Еще одно различие в электропроводности ионизованных газов и растворов (расплавов) электролитов состоит в том, что отрицательный заряд при прохождении тока через газы переносится в основном не отрицательными ионами, а электронами, хотя проводимость за счет отрицательных ионов также может играть определенную роль.Таким образом в газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов и расплавов электролитов.
Несамостоятельный газовый разряд.
Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа.Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами.При некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток достигает насыщения .
Самостоятельный газовый разряд.
Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом. Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать.Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.
Различные типы самостоятельного разряда и их техническое применение.
В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда. Рассмотрим несколько из них.
Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков.
Коронный разряд-с коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.
Искровой разряд-характерным примером искрового разряда является молния. Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.
Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах.
Плазма применяется в магнитогидродинамических генераторах.