Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты матан теория.docx
Скачиваний:
16
Добавлен:
26.09.2019
Размер:
940.82 Кб
Скачать

Билет 7

Функция распределения вероятностей и ее свойства.

Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем х, т.е. F(x)=P{X < х}.

Рассмотрим свойства функции F(x).

1. F(-∞)=lim(x→-∞)F(x)=0. Действительно, по определению, F(-∞)=P{X < -∞}. Событие (X < -∞) является невозможным событием: F(-∞)=P{X < - ∞}=p{V}=0.

2. F(∞)=lim(x→∞)F(x)=1, так как по определению, F(∞)=P{X < ∞}. Событие Х < ∞ является достоверным cобытием. Следовательно, F(∞)=P{X < ∞}=p{U}=1.

3. Вероятность того, что случайная величина примет значение из интервала [Α Β] равна приращению функции распределения вероятностей на этом интервале. P{Α ≤X<Β}=F(Β)-F(Α).

4. F(x2)≥ F(x1 ), если x2, > x1, т.е. функция распределения вероятностей является неубывающей функцией.

5. Функция распределения вероятностей непрерывна слева. FΨ(xo-0)=limFΨ(x)=FΨ(xo) при х→ xo

Различия между функциями распределения вероятностей дискретной и непрерывной случайных величин хорошо иллюстрировать графиками. Пусть, например, дискретная случайная величина имеет n возможных значений, вероятности которых равны P{X=xk}=pk, k=1,2,..n. Если x ≤ x1, то F(Х)=0, так как левее х нет возможных значений случайной величины. Если x1< x ≤ x2 , то левее х находится всего одно возможное значение, а именно, значение х1.

Значит, F(x)=P{X=x1}=p1.При x2< x ≤ x3 слева от х находится уже два возможных значения, поэтому F(x)=P{X=x1}+P{X=x2}=p1+p2. Рассуждая аналогично,приходим к выводу, что если хk< x≤ xk+1, то F(x)=1, так как функция будет равна сумме вероятностей всех возможных значений, которая по условию нормировки равна еденице. Таким образом, график функции распределения дискретной случайной величины является ступенчатым. Возможные значения непрерывной величины располагаются плотно на интервале задания этой величины, что обеспечивает плавное возрастания функции распределения F(x), т.е. ее непрерывность.

Рассмотрим вероятность попадания случайной величины в интервал [x, x+Δx], Δx>0: P{x≤X< x+Δx}=F(x+ Δx)-F(x). Перейдем к пределу при Δx→0:

lim(Δx→0)P{x≤ X < x+Δx}=lim(Δx→0)F(x+Δx)-F(x). Предел равен вероятности того, что случайная величина примет значение, равное х. Если функция F(x) непрерывна в точке х, то lim(Δx→0)F(x+Δx)=F(x), т.е. P{X=x}=0.

Если F(x) имеет разрыв в точке х, то вероятность P{X=x} будет равна скачку функции в этой точке. Таким образом, вероятность появления любого возможного значения для непрерывной величины равна нулю. Выражение P{X=x}=0 следует понимать как предел вероятности попадания случайной величины в бесконечно малую окрестность точки х при P{Α< X≤ Β},P{Α ≤ X< Β},P{Α< X< Β},P{Α ≤ X≤ Β} равны, если Х - непрерывная случайная величина.

Функция распределения плотности вероятностей и ее свойства.

Из формулы P{Α ≤ X < Β}=F(Β)-F(Α)следует, что вероятность попадания случайной величины в заданный интервал определяется скоростью изменения функции распределения вероятностей на этом интервале. Скорость изменения непрерывной функции равна ее производной. Это позволяет ввести новую функцию для задания случайной величины. Рассмотрим снова вероятность попадания случайной величины в интервал [x,x+Δx]:

P{x≤X<x+Δx}=F(x+Δx)-F(x).

Пусть Х - непрерывная случайная величина. Тогда для малых значений Δx эта вероятность будет также достаточно малой. Поделим ее на Δx и перейдем к пределу при Δx →0:

limΔx →0(P{x≤X<x+Δx}/Δx)=limΔx →0(F(x+Δx)-F(x))/Δx).

Если это предел существует, то он равен производной от функции распределения F(x):

limΔx →0(F(x+Δx)-F(x))/Δx)=F'(x)=f(x).

Функция f(x) называется плотностью распределения вероятностей случайной величины Х. Из определения следует, что при малых значениях Δx справедливо равенство:

P{x≤X<x+Δx}≈f(x)*Δx

ассмотрим свойства плотности распределения f(x).

1. Всегда f(x)≥0, так как функция F(x) является неубывающей функцией.

2 Для функции распределения F(x) справедливо равенство:

F(x)=-∞∫xf(t)dt.

Действительно, так как по определению f(x)=F'(x), то F(x) является первообразной функцией по отношению к плотности распределения f(x). Следовательно,

-∞∫∞f(t)dt=F(t)-∞ιx=F(x)-F(-∞)=F(x)-0=F(x.)

3. Вероятность попадания случайной величины в заданный интервал [Α ; Β] равна:

P{Α≤X<Β}=Α∫βf(t)dt.

Действительно, в соответствии с формулой Ньютона-Лейбница этот определенный интеграл равен F(Β)-F(Α). По 3-му свойству функции распределения вероятностей эта разность и представляет собой вероятность P{Α≤X<Β} .

4. Интеграл от плотности распределения вероятности по всей области задания случайной величины равен единице:

-∞∫∞f(t)dt=1 .

Равенство -∞∫∞f(t)dt=1 представляет условие нормировки вероятностей для непрерывных случайных величин. По смыслу данный интеграл есть не что иное, как F(∞)=1. Условие нормировки вероятностей часто используется для определения неизвестного параметра закона распределения.

Для иллюстрации геометрического смысла перечисленных свойств приведем пример графика плотности распределения вероятностей. Для большей наглядности на рис. представлен также график соответствующей функции распределения вероятностей.

Вся кривая плотности распределения вероятностей располагается выше оси 0Х (свойство1), причем максимум плотности достигается в точке х=а, в которой функция распределения вероятностей имеет наибольшую крутизну. Вероятность попадания случайной величины в интервал [Α ; Β] численно равна площади криволинейной трапеции, построенной на этом интервале как на основании и ограниченной сверху графиком плотности распределения (заштрихованная на рисунке область). Площадь всей криволинейной трапеции, заключенной между осью 0Х и графиком плотности распределения, всегда равна единице. Любая функция, удовлетворяющая перечисленным выше свойствам, может быть плотностью распределения некоторой непрерывной случайной величины.