
- •1.Электрическая цепь и ее элементы
- •3.Линейные и нелинейные электрические цепи
- •4.Источники электрической энергии
- •5.Приемники электрической энергии.
- •6. Основные топологические понятия и определения электрических цепей.
- •7.Законы Ома и Кирхгофа.
- •8. Понятие об установившемся и переходном процессах. Законы коммутации.
- •9. Анализ линейных цепей с применением законов Кирхгофа.
- •10. Метод эквивалентных преобразований.
- •13. Параметры синусоидального тока.
- •14. Векторная форма представления синусоидальных электрических величин.
- •15.Косплексное представление синусоидальных электрических величин.
- •17. Активная, реактивная и полная мощности.
- •19.Резонанс напряжений в последлвательной цепи r,l,c.
- •20. Трехфазная цепь. Соединение звезда.
- •21. Трехфазная цепь, соединение треугольник.
- •22.Мощность трехфазной цепи.
- •23. Системы электроснабжения.
- •25. Магнитные величины и ферромагнетики.
- •Свойства ферромагнетиков
- •27.Электромагнитные устройства.
- •28.Трансформаторы:назначение, устройство, характеристики. Виды трансформаторов.
- •30.Электрические машины: электропривод, классификация, общие вопросы.
- •31.Машины постоянного тока: принцип работы, устройство, характеристики.
- •Машина постоянного тока может работать в двух режимах: двигательном и генераторном. Электродвигатель
- •Генератор
- •32.Машины переменного тока: принцип работы, устройство, характеристики.
- •33.Полупроводниковые приборы. P-n переход. Диоды.
- •34. Транзисторы биполярные: назначение, устройство, характеристики.
- •35.Полевые транзисторы: устройство. Достоинства. Интегральные микросхемы.
- •36.Силовые полупроводниковые приборы. Динисторы, симисторы, тиристоры.
- •38.Трехфазные выпрямители тока
- •39.Сглаживающие фильтры и стабилизаторы напряжения.
- •40.Резистивные усилители низкой частоты.
20. Трехфазная цепь. Соединение звезда.
Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток приёмника (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и приёмника, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным. Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.
Если сопротивления Za, Zb, Zc приёмника равны между собой, то такую нагрузку называют симметричной.
Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами(UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями: IL=IF; UL=√3*UF
21. Трехфазная цепь, соединение треугольник.
Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой. Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями: IL=√3*IF; UL=UF
22.Мощность трехфазной цепи.
Каждую фазу нагрузки в трехфазной цепи можно рассматривать как цепь однофазного переменного тока. Соотношения для мгновенной, активной, реактивной, полной и комплексной мощностей ранее были получены. Мгновенные мощности фаз можно определить согласно выражению: Pф(t)=Uф(t)*iф(t). Суммарная мгновенная мощность будет равна: P=Pa+Pb+Pc. Тогда получим: P(t)=3UфIфcosφ=3Pф=P,
где Pф - активная мощность одной фазы, а P - суммарная активная мощность нагрузки. Получаем вывод: суммарная мгновенная мощность симметричной трехфазной цепи не изменяется во времени и равна суммарной активной мощности всей цепи.
Реактивная и полная мощности определяются так:
Q=3Qф=3UфIфsinφ
S=3Sф=3UфIф
При несимметричной нагрузке суммарные мощности определяются как алгебраические суммы мощностей отдельных фаз. Активная мощность трехфазного приемника равна сумме активных мощностей фаз и аналогично для реактивной. Полная мощность трехфазной цепи будет равна:
S=Sa+Sb+Sc=UaIa+UbIb+UcIc=√P2+Q2
23. Системы электроснабжения.
Система электроснабжения — совокупность источников и систем преобразования, передачи и распределения электрической энергии.
Система электроснабжения не включает в себя потребителей (или приёмников электроэнергии).
К системам электроснабжения (СЭС) предъявляются следующие основные требования:
Надёжность системы и бесперебойность электроснабжения потребителей.
Качество электроэнергии на вводе к потребителю.
Безопасность обслуживания элементов СЭС.
Унификация (модульность, стандартизация).
Экономичность, включает в себя такие понятия, как энергоэффективность и энергосбережение.
Экологичность.
Эргономичность.
Конфигурация СЭС — схема расположения входящих в СЭС источников электроэнергии, устройств распределения, передачи, преобразования электроэнергии (электростанции, линии электропередачи, трансформаторные подстанции, распределительные устройства и т. д.).
Классификация СЭС:
По типу источников электроэнергии — электрохимические, дизель-электрические, атомные и т. д.
По конфигурации — централизованные, децентрализованные, комбинированные.
По роду и частоте тока — постоянного тока, переменного тока 50 Гц, переменного тока 400 Гц и др.
По числу фаз — одно-, двух-, трёх-, многофазные.
По режиму нейтрали — с изолированной нейтралью, глухозаземлённой нейтралью, компенсированной нейтралью и т. д.
По надёжности электроснабжения — обеспечение потребителей 1 (1А, 1Б, 1В), 2, 3 категорий надёжности, обеспечение смешанных потребителей.
По назначению — системы автономного, резервного, аварийного, дежурного электроснабжения.
По степени мобильности — стационарные, мобильные, возимые, носимые.
По принадлежности к основному потребителю — СЭС автомобиля, танка, вертолёта, спутника и т. д.