
- •1.Электрическая цепь и ее элементы
- •3.Линейные и нелинейные электрические цепи
- •4.Источники электрической энергии
- •5.Приемники электрической энергии.
- •6. Основные топологические понятия и определения электрических цепей.
- •7.Законы Ома и Кирхгофа.
- •8. Понятие об установившемся и переходном процессах. Законы коммутации.
- •9. Анализ линейных цепей с применением законов Кирхгофа.
- •10. Метод эквивалентных преобразований.
- •13. Параметры синусоидального тока.
- •14. Векторная форма представления синусоидальных электрических величин.
- •15.Косплексное представление синусоидальных электрических величин.
- •17. Активная, реактивная и полная мощности.
- •19.Резонанс напряжений в последлвательной цепи r,l,c.
- •20. Трехфазная цепь. Соединение звезда.
- •21. Трехфазная цепь, соединение треугольник.
- •22.Мощность трехфазной цепи.
- •23. Системы электроснабжения.
- •25. Магнитные величины и ферромагнетики.
- •Свойства ферромагнетиков
- •27.Электромагнитные устройства.
- •28.Трансформаторы:назначение, устройство, характеристики. Виды трансформаторов.
- •30.Электрические машины: электропривод, классификация, общие вопросы.
- •31.Машины постоянного тока: принцип работы, устройство, характеристики.
- •Машина постоянного тока может работать в двух режимах: двигательном и генераторном. Электродвигатель
- •Генератор
- •32.Машины переменного тока: принцип работы, устройство, характеристики.
- •33.Полупроводниковые приборы. P-n переход. Диоды.
- •34. Транзисторы биполярные: назначение, устройство, характеристики.
- •35.Полевые транзисторы: устройство. Достоинства. Интегральные микросхемы.
- •36.Силовые полупроводниковые приборы. Динисторы, симисторы, тиристоры.
- •38.Трехфазные выпрямители тока
- •39.Сглаживающие фильтры и стабилизаторы напряжения.
- •40.Резистивные усилители низкой частоты.
33.Полупроводниковые приборы. P-n переход. Диоды.
Полупроводниковые приборы, ППП — широкий класс электронных приборов, изготавливаемых из полупроводников.
К полупроводниковым приборам относятся:
Интегральные схемы (микросхемы)
Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),
Тиристоры, фототиристоры,
Транзисторы,
Приборы с зарядовой связью,
Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),
Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),
Терморезисторы, датчики Холла.
p-n-Перехо́д, или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой. Дио́д— вухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды. Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий).
34. Транзисторы биполярные: назначение, устройство, характеристики.
Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.
Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трех различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база, поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор). Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, не зависимо от схемы его включения. В качестве основных собственных параметров принимают:
коэффициент усиления по току α;
сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
rк — сумму сопротивлений коллекторной области и коллекторного перехода;
rб — поперечное сопротивление базы.Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».