
- •2 Вопрос.
- •3Вопрос
- •2 Билет
- •1 Вопрос
- •2 Вопрос
- •3 Вопрос.
- •3 Билет.
- •1 Вопросы.
- •2 Вопрос.
- •3 Вопрос.
- •4 Билет.
- •1 Вопрос
- •2 Вопрос
- •3 Вопрос
- •6 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •7 Билет.
- •1 Вопрос.
- •2 Вопрос
- •3.Вопрос.
- •8 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •Кровяные нетрансмиссивные инфекции
- •3 Вопрос.
- •9 Билет.
- •1 Вопрос.
- •Физиологическая регенерация
- •Репаративная регенерация
- •2 Вопрос.
- •3 Вопрос.
- •Система комплемента
- •Клеточные факторы врождённого иммунитета
- •10 Билет
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •11 Билет.
- •1 Вопрос.
- •Свойства гена
- •2 Вопрос.
- •3 Вопрос.
- •12 Билет
- •1 Вопрос.
- •3 Вопрос.
- •13 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •14 Билет.
- •1 Вопрос.
- •1 Вопрос.
- •Вопрос 2
- •3 Вопрос. Неполное превращение
- •15 Билет.
- •1 Вопрос.
- •16 Билет
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •17 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •18 Билет
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •19 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •20 Билет
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •21 Билет
- •1 Вопрос
- •2 Вопрос
- •3Вопрос
- •22 Билет.
- •23 Билет
- •24 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •25 Билет
- •1Вопрос
- •Клеточный гомеостаз
- •Гомеостаз в организме человека
- •2 Вопрос.
- •Фазы митоза
- •3 Вопрос
- •26 Билет.
- •1 Вопрос
- •2 Вопрос.
- •3 Вопрос.
- •27 Билет.
- •1 Вопрос.
- •1. Постэмбриональное развитие
- •2 Вопрос.
- •3 Вопрос.
- •28 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос
- •29 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •30 Билет.
- •II. Аутосомно-рецессивный тип наследования.
- •III. Менделирующие признаки, сцепленные с полом (неполно).
- •2 Вопрос.
- •31 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •Трисомия
- •Мозаицизм
- •3 Вопрос.
- •Распространение
- •Описание
- •Размножение и развитие
- •Значение
- •32 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •33 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •34 Билет.
- •1 Вопрос.
- •2 Вопрос.
- •3 Вопрос.
- •35 Билет.
- •1 Вопрос.
- •Вопрос 3. Учение академика е.Н. Павловского о природно-очаговых заболеваниях.
- •Билет № 37
- •Экспериментальные доказательства роли днк в передаче наследственной информации в клетке.
- •Печёночный сосальщик. Систематическое положение, цикл развития, пути заражения, обоснование методов лабораторной диагностики и профилактики.
- •Положение вида Homo sapiens в системе животного мира. Качественные особенности человека. Соотношение биологических и социальных факторов в становлении человека.
- •Особенности цикла развития карликового цепня и свиного солитёра. Цистицеркоз.
- •2) Сцепленное наследование признака. Сцепленное с полом наследственность. Наследование признаков, контролируемых генами х и у хромосомами человека. Полигенное наследование.
- •3. Широкий лентец, систематика, морфология, цикл развития.
- •Билет № 43
- •Основные методы изучения генетики человека (генеалогический, онтогенетический, цитогенетический, близнецовый, популяционный). Значение генетики для биологии и медицины.
- •Биогенетический закон. Индивидуальное и историческое развитие.
- •Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы среды. Близнецовый метод.
- •Размножение. Эволюция размножения. Половой процесс как механизм обмена наследственной информации внутри вида.
- •Биологические ритмы. Значение биологических ритмов для медицины.
- •2. Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Проблема предрасположенности к заболеваниям. Факторы риска.
- •Характеристика гельминтов – паразитов человека Тюменской области.
- •Билет № 47
- •1.Генетический полиморфизм. Классификация .Генетический и мутационный груз и их биологическая сущность.
- •2. Окислительное фосфорилирование .Свободная энергия.Атф.Митохондрии.Первичная и вторичная теплота.
- •3.Как вы понимаете тезис «Паразит бережет своего хозяина»
- •Гипотеза Жакоба и Моно о внутриклеточной регуляции синтеза белка.
- •Цикл развития и природная очаговость лейшманиоза и африканской сонной болезни.
- •Гипотеза Жакоба и Моно о внутриклеточной регуляции синтеза белка.
- •Малярия как типичный пример антропонозного заболевания. Цикл развития, пути заражения, основы профилактики.
- •Демэкология. Виды популяций. Типы пространственного распределения особей в популяциях (равномерный, диффузный, агрегированный). Экологическая дифференциация человечества.
- •1 Вопрос
- •2 Вопрос.
- •3 Вопрос
- •Влияние на сезонную ритмику и размножение
- •[Править]Циркадный ритм и сон
- •Влияние на секрецию других гормонов и нейромедиаторов
- •Недостаток мелатонина в организме
2 Вопрос.
Генетика (от греч. génesis — происхождение) — наука о законах наследственности и изменчивости Предложен в 1906 г. английским биологом Бейтсоном.
Задачи генетики: 1. В области с/х. - выведение новых сортов растений и новых пород животных, а также усовершенствование существующих 2. Медицинская генетика - разработка методов диагностики наследственных заболеваний, разработка их профилактики 3. Генная инженерия
Предмет и задачи генетики человека. Генетика человека, или медицинская генетика, изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни.
Основные положения эволюционного учения Ч. Дарвина
Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.
Сущность эволюционного учения заключается в следующих основных положениях:
1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.
2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.
3. В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.
4. Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.
Главная заслуга Дарвина в том, что он установил механизм эволюции, объясняющий как многообразие живых существ, так и их изумительную целесообразность, приспособленность к условиям существования. Этот механизм — постепенный естественный отбор случайных ненаправленных наследственных изменений.
Взаимоотношения эволюционного процесса и отбора в популяциях (С. С. Четвериков)
Популяционные волны – изменение численности особей в популяции. С.С. Четвериков назвал их волнами жизни. Колебания численности особей могут привести к временному изменению их ареала. В результате организмы оказываются в нетипичных условиях, что может повлечет за собой усилении мутационного процесса. Рост численности популяций приводит к их слиянию и обмену генофондом. В небольших популяциях большую роль играет дрейф генов. Случайное повышение концентрации некоторых мутаций приводит дает новый материал для отбора. Таким образом, популяционные волны наряду с мутационным процессом являются поставщиками элементарного эволюционного материала.
Закон Харди-Вайнберга:
Закон Харди — Вайнберга — это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:
p² + 2pq + q² = 1
Где p² — доля гомозигот по одному из аллелей; p — частота этого аллеля; q² — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот
Использование формул закона Харди-Вайнберга позволяет рассчитать генетический состав популяции в данное время и определить возможные тенденции его изменений, можно вычислить насыщенность популяции определенными генами, рассчитать частоты гетерозиготного носительства аллелей у людей. При медико-генетических исследованиях популяций расчеты по закону Харди-Вайнберга нашли широкое применение. Но в тех случаях, когда популяции ограничены по численности, закон Харди-Вайнберга не действует, так как основан на статистических закономерностях, которые не играют роли в случае малых чисел.
Практическое значение закона Харди–Вайнберга
1. В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка.
2. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).
3. В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов
Элементарной единицей эволюции является популяция (каждая популяция обладает собственной эволюционной судьбой).
Популяция – это…
– самовоспроизводящаяся группировка особей одного вида,
– более или менее изолированная от других подобных группировок,
– населяющая определенный ареал в течение длительного ряда поколений,
– образующая собственную генетическую систему,
– формирующая собственную экологическую нишу
Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы и др.). Для описания генетической структуры популяций используются термины «аллелофонд» и «генофонд».
Аллелофонд популяции – это совокупность аллелей в популяции.
В простейшем случае рассматриваемый признак определяется двумя аллелями одного гена: А и а. Такое определение признака называется моногенным диаллельным. В этом случае структура аллелофонда описывается уравнением: pA+qa=1.
В
этом уравнении символом pA обозначается относительная
частота аллеля А, символом qa – относительная
частота аллеля а. В популяции с
общей численностью особей Nобщ и
известной численностью особей с
генотипамиАА, Аа, аа относительные
частоты аллелей рассчитываются по
формулам: