
- •Организация эвм
- •Принципы Неймана построения эвм. Элемент Неймана. Автомат Неймана.
- •Структура классической эвм. Назначение и взаимосвязь ее основных устройств.
- •Машина Тьюринга.
- •Команда и ее формат. Взаимосвязь формата команды и основных параметров эвм
- •Системы кодирования команд. Структура одно-, двух-, трех-, четырехадресной эвм. Естественный и принудительный порядок выполнения программы.
- •Стековая память. Структура безадресной эвм.
- •Цикл выполнения команды. Взаимодействие основных узлов и устройств эвм при автоматическом выполнении команды в трехадресной эвм.
- •Основы схемотехнической реализации эвм
- •Системы логических элементов. Основные параметры логических элементов. Условно-графические обозначения основных логических элементов.
- •Этапы проектирование логических схем на элементах “и-не”, “или-не”. Быстродействие логических схем.
- •Д ешифратор: назначение, таблица истинности. Условно-графическое обозначение.
- •Триггер. Назначение. Классификация триггерных схем.
- •Асинхронный двоичный счетчик. Назначение. Временная диаграмма работы. Оценка быстродействия.
- •Регистры. Назначение. Регистр хранения. Регистр сдвига. Условно-графическое обозначение. Регистр хранения
- •Устройства эвм
- •Устройство управления (уу): назначение, принципы построения.
- •Структурная схема уу с жесткой логикой. Реализация датчика сигналов на счетчике с дешифратором и на сдвиговом регистре.
- •Структурная схема микропрограммного уу.
- •Запоминающие устройства (зу): назначение, основные параметры. Иерархическая структура зу современных эвм.
- •Конвейерная организация работы микропроцессора. Ступени конвейера.
- •Оценка производительности микропроцессора при конвейерной организации работы.
- •Типы конфликтов в конвейере и методы уменьшения их влияния на снижение производительности микропроцессора.
- •Недостаточное дублирование некоторых ресурсов.
- •Система управления памятью. Статическое и динамическое распределение памяти. Страничная организация памяти. Виртуальная память.
- •Система прерываний. Назначение. Последовательность действий компьютера при обработке запросов прерываний.
- •Мультипрограммная эвм
- •Мультипрограммный режим работы эвм. Процесс и ресурс в мультипрограммных эвм.
- •Структура мультипрограммной эвм и особенности ее функционирования. Основные характеристики работы эвм в мультипрограммном режиме.
- •Счет1 - ввод - счет2 - вывод.
- •Одноочередные дисциплины распределения ресурсов в мультипрограммных эвм: fifo, lifo, круговой циклический алгоритм.
- •Многоочередная дисциплина распределения ресурсов в мультипрограммных эвм и ее модификации.
- •Режимы работы мультипрограммных эвм: пакетный, разделения времени, реального времени.
- •Организация работы персональной эвм
- •Структура персональной эвм.
- •Структура микропроцессора 8086, состав и назначение его основных блоков.
- •Организация памяти в ibm pc: физическое адресное пространство, адрес байта, слова, двойного слова.
- •Символическое и машинное представление команд: назначение, область применения.
- •Формат двухоперандной команды ibm pc общего вида. Назначение полей команды.
- •Режимы адресации операндов в ibm pc.
- •Формирование физического адреса в ibm pc в реальном режиме работы.
- •Формат команды ibm pc, использующей непосредственный операнд. Назначение полей команды.
- •Структура 32-разрядного микропроцессора, состав и назначение его основных блоков. Структура 32-разрядного универсального микропроцессора
- •Обработка прерываний в персональной эвм.
- •Порядок обработки прерываний
- •Контроллер приоритетных прерываний. Назначение. Порядок работы. Контроллер приоритетных прерываний
- •Каскадное включение контроллеров приоритетных прерываний
- •Защита памяти в мультипрограммных эвм. Назначение. Классические методы защиты Защита отдельных ячеек памяти. Метод граничных регистров. Метод ключей защиты памяти.
- •Организация защиты памяти в персональной эвм. Защита при управлении памятью. Защита по привилегиям.
- •Ввод-вывод информации в эвм. Проблемы организации ввода вывода и пути их решения.
- •Основные интерфейсные сигналы шины isa.
Регистры. Назначение. Регистр хранения. Регистр сдвига. Условно-графическое обозначение. Регистр хранения
Р
егистр
– внутреннее
запоминающее устройство процессора
или внешнего устройства,
предназначенное для
временного хранения обрабатываемой
или управляющей информации.
Регистры представляют собой совокупность
триггеров, количество
которых равняется
разрядности
регистра, и вспомогательных
схем, обеспечивающих выполнение некоторых
элементарных операций.
Набор этих операций, в зависимости от функционального назначения регистра, может включать в себя
одновременную установку всех разрядов регистра в "0",
параллельную или последовательную загрузку регистра,
сдвиг содержимого регистра влево или вправо на требуемое число разрядов,
управляемую выдачу информации из регистра (обычно используется при работе нескольких схем на общую шину данных)
…
Регистры хранения используются для приема, хранения и выдачи многоразрядного кода. Они представляют собой совокупность одноступенчатых триггеров (как правило, D-типа) с общим входом синхронизации. Иногда в регистре имеется также и общий вход асинхронной установки всех триггеров в "0".
Регистр сдвига
Р
егистр
сдвига – регистр, обеспечивающий
помимо хранения информации, сдвиг
влево или вправо
всех разрядов одновременно на
одинаковое число позиций. При
этом выдвигаемые
за пределы регистра разряды теряются,
а в освобождающиеся
разряды заносится информация,
поступающая по
отдельному внешнему входу регистра
сдвига. Обычно эти регистры обеспечивают
сдвиг кода на
одну позицию влево или
вправо.
Н
о
существуют и универсальные
регистры сдвига, которые выполняют
сдвиг как влево, так и вправо в
зависимости от значения сигнала
на специальном управляющем
входе или при подаче
синхросигналов на разные входы регистра.
Регистр сдвига может быть спроектирован
и таким образом, чтобы выполнять сдвиг
одновременно не на одну, а на несколько
позиций.
Регистры сдвига строятся на двухступенчатых триггерах.
Ввод информации в данный регистр – последовательный через внешний вход D0.
Регистр имеет вход асинхронной установки всех разрядов в "0".
Для наглядности каждый двухступечатый регистр представлен двумя одноступенчатыми с соответствующей организацией синхронизации первой и второй ступеней. Пунктиром обозначен реальный двухступенчатый триггер.
Работа регистра сдвига в каждом периоде сигнала синхронизации разбивается на две фазы: при высоком и при низком значении синхросигнала:
При высоком уровне синхросигнала проводится запись значения выхода (i – 1)-го разряда регистра в первую ступень i-го разряда. Вторая ступень каждого разряда сохраняет свое прежнее значение. В этой фазе состояние первой ступени i-го триггера повторяет состояние второй ступени (i – 1)-го триггера. Вторые ступени каждого триггера, а следовательно, и выходы регистра в целом, остаются неизменными.
При низком уровне синхросигнала значение, записанное в первой ступени каждого триггера, перезаписывается в его вторую ступень. Запись в первую ступень триггера запрещена. В этой фазе состояния первой и второй ступеней каждого триггера становятся одинаковыми.
Поступление сигнала R = 0 вне зависимости от значения сигнала на входе синхронизации С и сигнала на входе D0 устанавливает все разряды регистра в нулевое состояние.