
- •Организация эвм
- •Принципы Неймана построения эвм. Элемент Неймана. Автомат Неймана.
- •Структура классической эвм. Назначение и взаимосвязь ее основных устройств.
- •Машина Тьюринга.
- •Команда и ее формат. Взаимосвязь формата команды и основных параметров эвм
- •Системы кодирования команд. Структура одно-, двух-, трех-, четырехадресной эвм. Естественный и принудительный порядок выполнения программы.
- •Стековая память. Структура безадресной эвм.
- •Цикл выполнения команды. Взаимодействие основных узлов и устройств эвм при автоматическом выполнении команды в трехадресной эвм.
- •Основы схемотехнической реализации эвм
- •Системы логических элементов. Основные параметры логических элементов. Условно-графические обозначения основных логических элементов.
- •Этапы проектирование логических схем на элементах “и-не”, “или-не”. Быстродействие логических схем.
- •Д ешифратор: назначение, таблица истинности. Условно-графическое обозначение.
- •Триггер. Назначение. Классификация триггерных схем.
- •Асинхронный двоичный счетчик. Назначение. Временная диаграмма работы. Оценка быстродействия.
- •Регистры. Назначение. Регистр хранения. Регистр сдвига. Условно-графическое обозначение. Регистр хранения
- •Устройства эвм
- •Устройство управления (уу): назначение, принципы построения.
- •Структурная схема уу с жесткой логикой. Реализация датчика сигналов на счетчике с дешифратором и на сдвиговом регистре.
- •Структурная схема микропрограммного уу.
- •Запоминающие устройства (зу): назначение, основные параметры. Иерархическая структура зу современных эвм.
- •Конвейерная организация работы микропроцессора. Ступени конвейера.
- •Оценка производительности микропроцессора при конвейерной организации работы.
- •Типы конфликтов в конвейере и методы уменьшения их влияния на снижение производительности микропроцессора.
- •Недостаточное дублирование некоторых ресурсов.
- •Система управления памятью. Статическое и динамическое распределение памяти. Страничная организация памяти. Виртуальная память.
- •Система прерываний. Назначение. Последовательность действий компьютера при обработке запросов прерываний.
- •Мультипрограммная эвм
- •Мультипрограммный режим работы эвм. Процесс и ресурс в мультипрограммных эвм.
- •Структура мультипрограммной эвм и особенности ее функционирования. Основные характеристики работы эвм в мультипрограммном режиме.
- •Счет1 - ввод - счет2 - вывод.
- •Одноочередные дисциплины распределения ресурсов в мультипрограммных эвм: fifo, lifo, круговой циклический алгоритм.
- •Многоочередная дисциплина распределения ресурсов в мультипрограммных эвм и ее модификации.
- •Режимы работы мультипрограммных эвм: пакетный, разделения времени, реального времени.
- •Организация работы персональной эвм
- •Структура персональной эвм.
- •Структура микропроцессора 8086, состав и назначение его основных блоков.
- •Организация памяти в ibm pc: физическое адресное пространство, адрес байта, слова, двойного слова.
- •Символическое и машинное представление команд: назначение, область применения.
- •Формат двухоперандной команды ibm pc общего вида. Назначение полей команды.
- •Режимы адресации операндов в ibm pc.
- •Формирование физического адреса в ibm pc в реальном режиме работы.
- •Формат команды ibm pc, использующей непосредственный операнд. Назначение полей команды.
- •Структура 32-разрядного микропроцессора, состав и назначение его основных блоков. Структура 32-разрядного универсального микропроцессора
- •Обработка прерываний в персональной эвм.
- •Порядок обработки прерываний
- •Контроллер приоритетных прерываний. Назначение. Порядок работы. Контроллер приоритетных прерываний
- •Каскадное включение контроллеров приоритетных прерываний
- •Защита памяти в мультипрограммных эвм. Назначение. Классические методы защиты Защита отдельных ячеек памяти. Метод граничных регистров. Метод ключей защиты памяти.
- •Организация защиты памяти в персональной эвм. Защита при управлении памятью. Защита по привилегиям.
- •Ввод-вывод информации в эвм. Проблемы организации ввода вывода и пути их решения.
- •Основные интерфейсные сигналы шины isa.
Режимы адресации операндов в ibm pc.
Микропроцессор Intel-8086 (К1810ВМ80) имеет двухадресную систему команд [8,10]. Ее особенностью является отсутствие команд, использующих оба операнда из оперативной памяти. Исключение составляют лишь команды пересылки и сравнения цепочек байт или слов, которые в данном пособии рассматриваться не будут. Таким образом, в командах допустимы следующие сочетания операндов: RR, RS, RI, SI. Здесь R обозначает операнд, находящийся в одном из регистров регистровой памяти микропроцессора, S - операнд, находящийся в оперативной памяти, адрес которого формируется по одному из допустимых способов адресации, I - непосредственный операнд, закодированный в адресном поле самой команды. Формат команды во многом определяется способом адресации операнда, находящего в оперативной памяти, длиной используемого непосредственного операнда, а также наличием и длиной смещения, используемого при относительных режимах адресации.
Микропроцессор имеет все режимы адресации, общая схема которых была рассмотрена выше. Естественно, они имеют определенные особенности, присущие данному процессору.
Непосредственная адресация предполагает, что операнд занимает одно из полей команды и, следовательно, выбирается из оперативной памяти одновременно с ней. В зависимости от форматов обрабатываемых процессором данных непосредственный операнд может иметь длину 8 или 16 бит, что в дальнейшем будем обозначать data8 и data16 соответственно.
Механизмы адресации операндов, находящихся в регистровой памяти и в оперативной памяти, существенно различаются. К регистровой памяти допускается лишь прямая регистровая адресация. При этом в команде указывается номер регистра, содержащего операнд. 16-разрядный операнд может находиться в регистрах AX, BX, CX, DX, DI, SI, SP, BP, а 8-разрядный - в регистрах AL, AH, BL, BH, CL, CH, DL, DH.
Адресация оперативной памяти имеет свои особенности, связанные с ее разбиением на сегменты и использованием сегментной группы регистров для указания начального адреса сегмента. 16-разрядный адрес, получаемый в блоке формирования адреса операнда на основе указанного режима адресации, называется эффективным адресом (ЭА). Иногда эффективный адрес обозначается как ЕА ( effective address ). 20-разрядный адрес, который получается сложением эффективного адреса и увеличенного в 16 раз значения соответствующего сегментного регистра, называется физическим адресом (ФА).
Именно физический адрес передается из микропроцессора по 20-ти адресным линиям, входящим в состав системной шины, в оперативную память и используется при обращении к ее ячейке на физическом уровне. При получении эффективного адреса могут использоваться все основные режимы адресации, рассмотренные выше, а также некоторые их комбинации.
Прямая адресация предполагает, что эффективный адрес является частью команды. Так как ЭА состоит из 16 разрядов, то и соответствующее поле команды должно иметь такую же длину.
При регистровой косвенной адресации эффективный адрес операнда находится в базовом регистре BX или одном из индексных регистров DI либо SI :
Обозначение имени регистра в квадратных скобках указывает на содержимое соответствующего регистра. Фигурные скобки - символ выбора одной из нескольких возможных альтернатив.
При регистровой относительной адресации эффективный адрес равен сумме содержимого базового или индексного регистра и смещения:
Обозначения disp8 и disp16 здесь и далее указывают на 8- или 16-разрядное смещение соответственно.
Эффективный адрес при базово-индексной адресации равен сумме содержимого базового и индексного регистров, определяемых командой:
Наиболее сложен механизм относительной базово-индексной адресации. Эффективный адрес в этом случае равен сумме 8- или 16-разрядного смещения и базово-индексного адреса: