
- •Организация эвм
- •Принципы Неймана построения эвм. Элемент Неймана. Автомат Неймана.
- •Структура классической эвм. Назначение и взаимосвязь ее основных устройств.
- •Машина Тьюринга.
- •Команда и ее формат. Взаимосвязь формата команды и основных параметров эвм
- •Системы кодирования команд. Структура одно-, двух-, трех-, четырехадресной эвм. Естественный и принудительный порядок выполнения программы.
- •Стековая память. Структура безадресной эвм.
- •Цикл выполнения команды. Взаимодействие основных узлов и устройств эвм при автоматическом выполнении команды в трехадресной эвм.
- •Основы схемотехнической реализации эвм
- •Системы логических элементов. Основные параметры логических элементов. Условно-графические обозначения основных логических элементов.
- •Этапы проектирование логических схем на элементах “и-не”, “или-не”. Быстродействие логических схем.
- •Д ешифратор: назначение, таблица истинности. Условно-графическое обозначение.
- •Триггер. Назначение. Классификация триггерных схем.
- •Асинхронный двоичный счетчик. Назначение. Временная диаграмма работы. Оценка быстродействия.
- •Регистры. Назначение. Регистр хранения. Регистр сдвига. Условно-графическое обозначение. Регистр хранения
- •Устройства эвм
- •Устройство управления (уу): назначение, принципы построения.
- •Структурная схема уу с жесткой логикой. Реализация датчика сигналов на счетчике с дешифратором и на сдвиговом регистре.
- •Структурная схема микропрограммного уу.
- •Запоминающие устройства (зу): назначение, основные параметры. Иерархическая структура зу современных эвм.
- •Конвейерная организация работы микропроцессора. Ступени конвейера.
- •Оценка производительности микропроцессора при конвейерной организации работы.
- •Типы конфликтов в конвейере и методы уменьшения их влияния на снижение производительности микропроцессора.
- •Недостаточное дублирование некоторых ресурсов.
- •Система управления памятью. Статическое и динамическое распределение памяти. Страничная организация памяти. Виртуальная память.
- •Система прерываний. Назначение. Последовательность действий компьютера при обработке запросов прерываний.
- •Мультипрограммная эвм
- •Мультипрограммный режим работы эвм. Процесс и ресурс в мультипрограммных эвм.
- •Структура мультипрограммной эвм и особенности ее функционирования. Основные характеристики работы эвм в мультипрограммном режиме.
- •Счет1 - ввод - счет2 - вывод.
- •Одноочередные дисциплины распределения ресурсов в мультипрограммных эвм: fifo, lifo, круговой циклический алгоритм.
- •Многоочередная дисциплина распределения ресурсов в мультипрограммных эвм и ее модификации.
- •Режимы работы мультипрограммных эвм: пакетный, разделения времени, реального времени.
- •Организация работы персональной эвм
- •Структура персональной эвм.
- •Структура микропроцессора 8086, состав и назначение его основных блоков.
- •Организация памяти в ibm pc: физическое адресное пространство, адрес байта, слова, двойного слова.
- •Символическое и машинное представление команд: назначение, область применения.
- •Формат двухоперандной команды ibm pc общего вида. Назначение полей команды.
- •Режимы адресации операндов в ibm pc.
- •Формирование физического адреса в ibm pc в реальном режиме работы.
- •Формат команды ibm pc, использующей непосредственный операнд. Назначение полей команды.
- •Структура 32-разрядного микропроцессора, состав и назначение его основных блоков. Структура 32-разрядного универсального микропроцессора
- •Обработка прерываний в персональной эвм.
- •Порядок обработки прерываний
- •Контроллер приоритетных прерываний. Назначение. Порядок работы. Контроллер приоритетных прерываний
- •Каскадное включение контроллеров приоритетных прерываний
- •Защита памяти в мультипрограммных эвм. Назначение. Классические методы защиты Защита отдельных ячеек памяти. Метод граничных регистров. Метод ключей защиты памяти.
- •Организация защиты памяти в персональной эвм. Защита при управлении памятью. Защита по привилегиям.
- •Ввод-вывод информации в эвм. Проблемы организации ввода вывода и пути их решения.
- •Основные интерфейсные сигналы шины isa.
Типы конфликтов в конвейере и методы уменьшения их влияния на снижение производительности микропроцессора.
Конфликты в конвейере и способы минимизации их влияния на производительность процессора
Значительное преимущество конвейерной обработки перед последовательной имеет место в идеальном конвейере, в котором отсутствуют конфликты и все команды выполняются друг за другом без перезагрузки конвейера. Наличие конфликтов снижает реальную производительность конвейера по сравнению с идеальным случаем.
Конфликты - это такие ситуации в конвейерной обработке, которые препятствуют выполнению очередной команды в предназначенном для нее такте.
Конфликты делятся на три группы:
структурные,
по управлению,
по данным.
Структурные конфликты возникают в том случае, когда аппаратные средства процессора не могут поддерживать все возможные комбинации команд в режиме одновременного выполнения с совмещением.
Причины структурных конфликтов.
Не полностью конвейерная структура процессора, при которой некоторые ступени отдельных команд выполняются более одного такта.
Пусть этап выполнения команды i+1 занимает 3 такта. Тогда диаграмма работы конвейера будет иметь вид:
-
Таблица 11.3.
Команда
Такт
1
2
3
4
5
6
7
8
9
i
IF
ID
OR
EX
WB
i+1
IF
ID
OR
EX
EX
EX
WB
i+2
IF
ID
OR
O
O
EX
WB
i+3
IF
ID
OR
O
O
EX
i+4
IF
ID
OR
O
O
При этом в работе конвейера возникают так называемые "пузыри" (обработка команд i+2 и следующих за ней, начиная с такта 6), которые снижают производительность процессора.
Эту ситуацию можно было бы ликвидировать двумя способами.
Первый предполагает увеличение времени такта до такой величины, которая позволила бы все этапы любой команды выполнять за один такт. Однако при этом существенно снижается эффект конвейерной обработки, так как все этапы всех команд будут выполняться значительно дольше, в то время как обычно нескольких тактов требует выполнение лишь отдельных этапов очень небольшого количества команд.
Второй способ предполагает использование таких аппаратных решений, которые позволили бы значительно снизить затраты времени на выполнение данного этапа (например, использовать матричные схемы умножения). Но это приведет к усложнению схемы процессора и невозможности реализации на этой БИС других, функционально более важных, узлов. Так как представленная в таблице ситуация возникает при реализации команд, относительно редко встречающихся в программе, то обычно разработчики процессоров ищут компромисс между увеличением длительности такта и усложнением того или иного устройства процессора.