
- •1. Нагнетательные машины
- •1. Гидродинамические насосы
- •2. Объемные насосы
- •3. Характеристики насоса
- •4. Кпд насоса
- •5. Насосы в нефтегазовом деле
- •6.Буровой насос
- •7. Скважинные насосные установки
- •8. Насосы для системы ппд
- •9. Насосы нефтяные для магистральных нефтепроводов
- •10 Классификация насосов
- •11 Поршневые насосы
- •12 Гидравлическая часть поршневого насоса
- •13 Клапан поршневого насоса
- •14 Теоретическая (идеальная) и Действительная подача подача поршневых насосов
- •15 Неравномерность подачи
- •16 Компенсаторы
- •17. Индикаторная диаграмма
- •18 Диагностика неисправностей
- •19 Расчет насоса
- •21 Термодинамические основы сжатия газов
- •22 Поршневые компрессоры
- •30 Многоступенчатое сжатие.
- •33 Центробежные компрессоры
- •34 Основные элементы центробежного компрессора
- •36 Регулирование режима работы компрессора
- •38 Осевой компрессор
- •1.Гидродинамический
- •40. Сравнение приводов
- •41. Преимущества гидропривода
- •42. Основные элементы гидропривода
- •43. Рабочая жидкость
- •44. Требования к рабочим жидкостям
- •45. Минеральные масла
- •50. Соединения гидролиний
- •51 Шестеренные насосы
- •53 Шестеренные насосы внутреннего зацепления
- •54 Роторно-винтовые насосы
- •55. Пластинчатые насосы и гидромоторы
- •58 Радиально-поршневой насос
- •59 Пластинчатый поворотный гидродвигатель
- •60 Кривошипно-шатунный поворотный гидродвигатель
- •62 Плунжерный гидроцилиндр одностороннего принципа действия
- •63 Поршневые гидроцилиндры
- •64 Телескопические гидроцилиндры
- •65. Гидроаккумуляторы
- •Классификация гидроаккумуляторов с механическим накопителем
- •68. Схемы установки фильтров
- •71. Запорно-регулирующие элементы гидроаппаратов:
- •72 Гидрораспределители
- •77 Уплотнения
- •81 Манжетные уплотнения возвратно- поступательных механизмов
- •82 Манжетные уплотнения вращающихся валов
- •85 Торцовые уплотнения
33 Центробежные компрессоры
Схематическое изображение центробежного реактивного рабочего колеса.
Принцип действия центробежного компрессора в общем сопоставим с принципом действия осевого компрессора, но с одним существенным различием: в центробежном компрессоре поток воздуха входит в рабочее колесо вдоль оси двигателя, а в рабочем колесе происходит поворот потока в радиальном направлении. Таким образом, в рабочем колесе за счёт центробежной силы создаётся дополнительный рост полного давления. То есть частицы рабочего тела получают дополнительную кинетическую энергию.
Рабочее колесо центробежного компрессора представляет собой диск или же сложное тело вращения, на котором установлены лопатки, расходящиеся от центра к краям диска. Межлопаточный канал в центробежном рабочем колесе, так же, как и в осевом — диффузорный. По типу используемых лопаток рабочие колеса квалифицируются на радиальные (профиль лопатки ровный) и реактивные (профиль лопатки изогнутый). Реактивные рабочие колеса обладают более высокими КПД и степенью сжатия, но сложнее в изготовлении, и, как следствие — дороже. Поток газа попадает в рабочее колесо центробежного компрессора, где частицам газа передаётся кинетическая энергия вращающегося колеса, диффузорный межлопаточный канал производит торможение движения частиц газа относительно вращающегося колеса, центробежная сила придаёт дополнительную кинетическую энергию частицам рабочего тела и направляет их в радиальном направлении. После выхода из рабочего колеса частицы рабочего тела попадают в диффузор, где происходит их последующее торможение, с преобразованием их кинетической энергии во внутреннюю.
34 Основные элементы центробежного компрессора
Центробежные компрессоры в настоящее время наиболее применяются для наддува двигателей внутреннего сгорания. Этот вид компрессора относится к лопаточным машинам, принцип работы которых основан на динамическом воздействии высокоскоростного потока газа с лопатками рабочего колеса и лопатками неподвижных элементов машины. По сравнению с объемными, лопаточные компрессоры они более компактны и относительно просты по конструкции. Центробежный компрессор включает входное устройство, рабочее колесо (называемое также крыльчаткой), диффузор, состоящий из безлопаточной и лопаточной частей и воздухосборник, как правило выполняемый в виде улитки. Воздух через фильтр поступает в входное устройство, суживающееся по направлению движения воздуха, что делает поток более устойчивым. Входное устройство должно обеспечивать равномерный подвод воздуха к колесу с минимальными потерями. Рабочее колесо установлено на шлицах или на гладком валу, (в случае малых размеров), связанном механической передачей с коленчатым валом двигателя или прямо с рабочим колесом газовой турбины в зависимости от скорости вращения. Потенциальная и кинетическая (в виде давления) энергия сообщается воздуху в рабочем колесе. Кинетическая энергия на выходе из колеса составляет около половины общей энергии потока, поэтому для превращения ее в энергию давления за рабочим колесом устанавливают диффузор. При подаче воздуха в диффузоре вследствие непрерывного увеличения площади проходного сечения скорость потока падает, а давление увеличивается. При этом потери составляют значительную долю от общих потерь в компрессоре. При наличии в диффузоре лопаточной части потери уменьшаются по сравнению с диффузором без лопаток. Воздух, выходящий по окружности из диффузора, собирается в воздухосборнике и из него направляется во впускные трубопроводы двигателя. Воздухосборник в зависимости от компоновки на двигателе может иметь несколько выходных патрубков. Главными параметрами, характеризующими работу центробежного компрессора, являются расход воздуха через компрессор, степень повышения давления, а также КПД компрессора. Применяемые в настоящее время для наддува двигателей внутреннего сгорания компрессоры имеют достаточно широкий диапазон изменения этих параметров. Так, степень повышения давления меняется от 1,2 в компрессорах с приводом от вала двигателя, используемых в ряде случаев в качестве второй ступени наддува, до 3-3,5 и более в компрессорах форсированных комбинированных двигателей. В одной ступени возможно получение степени повышения давления порядка 10. Окружные скорости рабочего колеса компрессоров современных комбинированных двигателей на периферии превышают 400 м/с, поэтому для обеспечения высокой прочности колеса нудно применять только высококачественные материалы. Частота вращения колеса компрессора зависит от потребностей окружной скорости на периферии колеса, определяемой, в свою очередь, степенью повышения давления в компрессоре, а также от размеров колеса, связанных с расходом воздуха через компрессор. Поэтому высокая частота вращения, достигающая 150.000 об/мин, характерна для высоконапорных компрессоров автомобильных дизелей.
35 Помпа́ж (фр. pompage) — неустойчивая работа насоса (компрессора), характеризуемая резкими колебаниями напора и расхода перекачиваемой жидкости (газа). При помпаже появляются сильные пульсации потока, проходящего через насос (компрессор), возникают вибрации лопаток и тряска, которые могут вызвать разрушение насоса (компрессора). Помпаж зачастую связан с явлением гидроудара.
Возможен для всех компрессоров динамического сжатия (осевых, центробежных). При помпаже резко ухудшается аэродинамика проточной части, компрессор не может создавать требуемый напор, при этом, давление за ним на некоторое время остаётся высоким. В результате происходит обратный проброс воздуха. Давление за компрессором уменьшается, он снова развивает напор, но при отсутствии расхода напор резко падает, ситуация повторяется. При помпаже вся конструкция испытывает большие динамические нагрузки, которые могут привести к её разрушению.
С целью защиты насосов/компрессоров применяют системы антипомпажной защиты и частотно-регулируемый электропривод для недопущения выхода системы из заданных параметров.