- •Оглавление
- •1. Магнитные цепи. Элементы магнитной цепи. Закон полного тока.
- •2. Кривые намагничивания электротехнических материалов. Основные соотношения для ф;в;н. Законы Кирхгофа для магнитных цепей.
- •3. Методы расчёта неразветвлённых и разветвлённых магнитных цепей.
- •Соотношения ф в н
- •Свойства ферромагнитных материалов Кривая намагничивания
- •Законы кирхгофа для магнитых цепей
- •Уравнение (5.5) является аналогом первого закона Кирхгофа: алгебраическая сумма потоков, сходящихся в узле цепи, равна нулю (рис. 5.3).
- •4. Классический метод расчёта переходных процессов в линейных электрических цепях. Законы коммутаций.
- •4 Основные методы анализа переходных процессов в линейных цепях:
- •Классический метод расчета
- •5. Операторный метод расчета переходных процессов в линейных электрических цепях. Законы коммутаций.
- •6. Однофазные и трёхфазные электрические трансформаторы. Принцип действия, конструкция.
- •7. Определение параметров трансформатора из опытов холостого хода и короткого замыкания.
- •8. Основные энергетические соотношения для трансформаторов, виды потерь.
- •9. Вторичные источники электропитания. Схемы однофазных выпрямителей. Основные соотношения электрических величин. Сравнение различных схем выпрямления.
- •10. Машины постоянного тока. Устройство и принцип действия. Основные соотношения. Характеристики.
- •11. Асинхронные машины. Устройство и принцип действия. Основные соотношения. Характеристики. Скольжение.
- •12. Активные и реактивные сглаживающие фильтры. Типы, способы включения, принципы работы, сравнение.
- •13. Биполярные транзисторы. Типы, вах, основные параметры.
- •Основные параметры
- •14. Малосигнальные h-параметры биполярных транзисторов. Система h-параметров
- •15. Графический расчёт усиленного каскада с оэ на биполярном транзистре. Усилительный каскад на биполярном транзисторе
- •Расчёт транзисторного каскада с общим эмиттером ( оэ)
- •16. Термостабилизация (эмитерная и коллекторная) усилительного каскада с оэ.
- •17. Усилительный каскад с ок на биполярном транзисторе. Сравнение касадов с оэ и ок.
- •18. Полевые транзисторы с управляющим р-n- переходом. Устройство и принцип действия.
- •19. Полевой транзистор с изолированным затвором со встроенным каналом.
- •20. Операционные усилители, параметры (статические и динамические). Устройства преобразования аналоговых сигналов на основе операционных усилителей.
- •22. Тиггеры. Rs и d - тиггеры. Делитель частоты на 2.
- •23. Тиггеры. Jk и t – тиггеры. Получение на основе jk-тиггера d и t - тиггеров.
- •24. Параллельные и последовательные регистры на основе d – триггеров.
- •25. Счетчики импульсов (суммирующие, вичитающие) на основе т-триггеров.
- •26. Дешифраторы, шифраторы (простые, приоритетные); мультиплексоры, демультиплексоры.
15. Графический расчёт усиленного каскада с оэ на биполярном транзистре. Усилительный каскад на биполярном транзисторе
Усилительный
каскад должен содержать нелинейный
управляющий элемент (транзистор или
лампу), источник электрической энергии
и вспомогательные элементы. Во входную
цепь включается источник сигнала, а в
выходную - нагрузка. В дальнейшем будем
описывать источник сигнала в виде
генератора с напряжением eГ
и внутренним сопротивлением RГ,
а нагрузку - резистором RН
( во многих случаях нагрузка может стоять
на месте резистора RК).
На рис. 3.30 приведена схема усилительного
каскада с ОЭ. Полярность источника
питания EК
обеспечивает работу транзистора в
активном
режиме. Резисторы RБ
и RК
задают требуемые постоянные составляющие
токов в цепях транзистора и постоянные
напряжения на его электродах - рабочую
точку транзистора.
От выбора рабочей точки зависит усиление
каскада, КПД, искажения сигнала. Для
того, чтобы источник сигнала и нагрузка
не влияли на режим работы транзистора
по постоянному току, включены разделительные
конденсаторы CР1
и CР2,
имеющие в рабочем диапазоне частот
малые сопротивления. В рассматриваемой
схеме постоянные составляющие токов и
напряжений определяются:
;
(3.41)
IК(0)= IБ(0) ;
UКЭ(0)= EК - IК(0)RК ЕК IБ(0) RК, (3.42)
где U* 0,8 В - пороговое напряжение на открытом эмиттерном переходе транзистора. Тепловые токи считаются пренебрежимо малыми.
Расчёт транзисторного каскада с общим эмиттером ( оэ)
Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия: • Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода); • Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме "A" это, как правило, половина значения напряжения источника питания; • В эмиттерной цепи транзистора бежит два тока - ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера; • Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников - коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он - h21. Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение - 50); • Коллекторное (Rк) и эмиттерное (Rэ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада Rвх=Rэ*h21, а выходное равно Rвых=Rк. Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора Rэ; • Номиналы резисторов Rк и Rэ ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.
