
- •Конспект лекций
- •От авторов
- •Введение
- •Лекция 1. Электростатика в вакууме и веществе. Электрическое поле
- •1.1. Предмет классической электродинамики
- •1.2. Электрический заряд и его дискретность. Теория близкодействия
- •1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •1.3.1. Границы применимости закона Кулона
- •1.3.2. Принцип суперпозиции электрических полей. Электрическое поле диполя
- •1.4. Поток вектора напряженности электростатического поля
- •1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
- •1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
- •1.7. Энергия электрического заряда в электрическом поле
- •1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
- •1.8.1. Потенциал и разность потенциалов электрического поля
- •1.8.2. Связь напряженности электрического поля с его потенциалом
- •1.9. Эквипотенциальные поверхности
- •1.10. Основные уравнения электростатики в вакууме
- •1.11. Некоторые примеры электрических полей, порождаемых простейшими системами электрических зарядов
- •1.11.1. Электрическое поле, порождаемое бесконечно длинным, равномерно заряженным стержнем
- •1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •1.11.4. Поле заряженной сферической поверхности
- •1.11.5. Поле объёмно заряженного шара
- •Лекция 2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
- •2.3. Электроемкость уединенного проводника и ее физический смысл
- •2.4. Конденсаторы и их емкость
- •2.4.1. Емкость плоского конденсатора
- •2.4.2. Емкость цилиндрического конденсатора
- •2.4.3. Емкость сферического конденсатора
- •2.5. Соединения конденсаторов
- •2.5.1. Последовательное соединение конденсаторов
- •2.5.2. Параллельное и смешанное соединения конденсаторов
- •2.6. Классификация конденсаторов
- •Лекция 3. Статическое электрическое поле в веществе
- •3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
- •3.1.1. Диполь в однородном электрическом поле
- •3.1.2. Диполь в неоднородном внешнем электрическом поле
- •3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
- •3.4. Условия на границе раздела двух диэлектриков
- •3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
- •3.6. Основные уравнения электростатики диэлектриков
- •Лекция 4. Энергия электрического поля
- •4.1. Энергия взаимодействия электрических зарядов
- •4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
- •4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
- •4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
- •Лекция 5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
- •5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
- •Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
- •6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
- •6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
- •6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.3.1. Последовательное соединение сопротивлений
- •6.3.2. Параллельное соединение сопротивлений
- •6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
- •6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
- •Лекция 7. Электрический ток в вакууме, газах и жидкостях
- •7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
- •7.2. Вторичная и автоэлектронная эмиссия
- •7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
- •7.3.1. Несамостоятельная и самостоятельная проводимость газов
- •7.3.2. Закон Пашена
- •7.3.3. Виды разрядов в газах
- •7.3.3.1. Тлеющий разряд
- •7.3.3.2. Искровой разряд
- •7.3.3.3. Коронный разряд
- •7.3.3.4. Дуговой разряд
- •7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
- •7.5. Электролиты. Электролиз. Законы электролиза
- •7.6. Электрохимические потенциалы
- •7.7. Электрический ток через электролиты. Закон Ома для электролитов
- •7.7.1. Применение электролиза в технике
- •Лекция 8. Электроны в кристаллах
- •8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
- •8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
- •8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •8.3.1. Собственная проводимость полупроводников
- •8.3.2. Примесные полупроводники
- •8.4. Электромагнитные явления на границе раздела сред
- •8.4.2. Фотопроводимость полупроводников
- •8.4.3. Люминесценция вещества
- •8.4.4. Термоэлектрические явления. Закон Вольта
- •8.4.5. Эффект Пельтье
- •8.4.6. Явление Зеебека
- •8.4.7. Явление Томсона
- •Заключение
- •Библиографический список Основной
- •Дополнительный
1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
Количественно взаимодействия электрических зарядов подчиняются установленному в 1785 г. Кулоном закону, согласно которому сила взаимодействия двух точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними:
,
(1.2)
где 0 = 8,8510-12 Ф/м – электрическая постоянная;
q1, q2 – величины взаимодействующих зарядов;
r1,2 – расстояние между зарядами;
r0 – единичный вектор, показывающий направление силы.
В случае одноименных зарядов сила (сила отталкивания) положительна, разноименных (сила притяжения) – отрицательна (рис. 1.1).
П
од
точечными зарядами понимают линейно
протяженные заряженные тела, размерами
которых можно пренебречь в условиях
данной задачи.
При исследовании взаимодействия электрических зарядов возникают вопросы:
1. Что является причиной появления сил взаимодействия?
2. Как передается воздействие одного заряда на другие?
Для понимания этих явлений современная физика допускает наличие вокруг любого заряженного неподвижного тела электрического поля, которое является одной из форм существования материи.
Основным свойством электрического поля является то, что на любой заряд, помещенный в него, действует сила. Порождаясь зарядами, электрическое поле осуществляет электрическое взаимодействие.
Для количественной характеристики электрического поля вводится в рассмотрение физическая величина, называемая напряженностью электрического поля.
Напряженность электрического поля – векторная физическая величина. Она численно равна силе, действующей на положительный единичный заряд, помещенный в данную точку поля.
Если электрическое поле создается точечным зарядом q, то согласно определению напряженность такого поля
. (1.3)
Н
апряженность
электрического поля является его
силовой характеристикой. Направление
вектора E
совпадает с направлением силы, действующей
на заряд, помещенный в данную точку
поля. Он направлен по радиальной прямой,
проходящей через заряд и рассматриваемую
точку поля от заряда, если он положительный,
и к заряду, если он отрицательный (рис.
1.2).
За единицу напряженности электрического поля принимается напряженность в такой точке, в которой на заряд, равный единице, действует сила, равная единице.
В системе СИ напряженность электрического поля измеряется в Кл/м или В/м.
Из формулы (1.3) сила
F = qE. (1.4)
1.3.1. Границы применимости закона Кулона
Существенным в законе Кулона является утверждение об обратной пропорциональности силы взаимодействия от квадрата расстояния между взаимодействующими зарядами. Кроме того, сила взаимодействия между двумя какими-либо зарядами не зависит от наличия третьего заряда, т. е. независимо от числа зарядов, входящих в систему, закон Кулона (в вышеприведенном виде) можно применять для вычисления силы взаимодействия любой пары.
Это утверждение является основой принципа суперпозиции сил. Принцип суперпозиции сил заключается в том, что сила, действующая на заряд, расположенный в любом месте системы электрических зарядов, является результирующей всех сил, действующих на данный заряд со стороны других зарядов.
Например, при наличии трех электрических зарядов (рис. 1.3) результирующая сила, действующая на один из них q, может быть определена так:
. (1.5)
Ч
то
касается закона обратной пропорциональности
силы квадрату расстояния, то его
экспериментальное подтверждение в
определенном диапазоне расстояний
можно считать завершенным (от 10-10
м до нескольких км).
Однако имеются две области, в каждой из которых можно подозревать нарушение закона Кулона.
Первая область – область малых расстояний (<10-10 м), где нет уверенности применения электромагнитной теории.
Вторая область – область больших расстояний (>103 м). В этой области нет экспериментальных подтверждений справедливости закона Кулона. Хотя современная квантовая теория электромагнитного поля дает некоторые основания считать, что он справедлив в данном случае, т.к. при нарушении закона Кулона на больших расстояниях квант света (фотон) должен обладать небольшой массой покоя. Наличие конечной массы покоя у кванта света привело бы к некоторой зависимости скорости распространения электромагнитных волн в вакууме от длины волны, что не подтверждается экспериментально. Короткие электромагнитные волны (радиоволны) распространяются в вакууме со скоростью распространения световой волны.