
- •Конспект лекций
- •От авторов
- •Введение
- •Лекция 1. Электростатика в вакууме и веществе. Электрическое поле
- •1.1. Предмет классической электродинамики
- •1.2. Электрический заряд и его дискретность. Теория близкодействия
- •1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •1.3.1. Границы применимости закона Кулона
- •1.3.2. Принцип суперпозиции электрических полей. Электрическое поле диполя
- •1.4. Поток вектора напряженности электростатического поля
- •1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
- •1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
- •1.7. Энергия электрического заряда в электрическом поле
- •1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
- •1.8.1. Потенциал и разность потенциалов электрического поля
- •1.8.2. Связь напряженности электрического поля с его потенциалом
- •1.9. Эквипотенциальные поверхности
- •1.10. Основные уравнения электростатики в вакууме
- •1.11. Некоторые примеры электрических полей, порождаемых простейшими системами электрических зарядов
- •1.11.1. Электрическое поле, порождаемое бесконечно длинным, равномерно заряженным стержнем
- •1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •1.11.4. Поле заряженной сферической поверхности
- •1.11.5. Поле объёмно заряженного шара
- •Лекция 2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
- •2.3. Электроемкость уединенного проводника и ее физический смысл
- •2.4. Конденсаторы и их емкость
- •2.4.1. Емкость плоского конденсатора
- •2.4.2. Емкость цилиндрического конденсатора
- •2.4.3. Емкость сферического конденсатора
- •2.5. Соединения конденсаторов
- •2.5.1. Последовательное соединение конденсаторов
- •2.5.2. Параллельное и смешанное соединения конденсаторов
- •2.6. Классификация конденсаторов
- •Лекция 3. Статическое электрическое поле в веществе
- •3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
- •3.1.1. Диполь в однородном электрическом поле
- •3.1.2. Диполь в неоднородном внешнем электрическом поле
- •3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
- •3.4. Условия на границе раздела двух диэлектриков
- •3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
- •3.6. Основные уравнения электростатики диэлектриков
- •Лекция 4. Энергия электрического поля
- •4.1. Энергия взаимодействия электрических зарядов
- •4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
- •4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
- •4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
- •Лекция 5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
- •5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
- •Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
- •6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
- •6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
- •6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.3.1. Последовательное соединение сопротивлений
- •6.3.2. Параллельное соединение сопротивлений
- •6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
- •6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
- •Лекция 7. Электрический ток в вакууме, газах и жидкостях
- •7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
- •7.2. Вторичная и автоэлектронная эмиссия
- •7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
- •7.3.1. Несамостоятельная и самостоятельная проводимость газов
- •7.3.2. Закон Пашена
- •7.3.3. Виды разрядов в газах
- •7.3.3.1. Тлеющий разряд
- •7.3.3.2. Искровой разряд
- •7.3.3.3. Коронный разряд
- •7.3.3.4. Дуговой разряд
- •7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
- •7.5. Электролиты. Электролиз. Законы электролиза
- •7.6. Электрохимические потенциалы
- •7.7. Электрический ток через электролиты. Закон Ома для электролитов
- •7.7.1. Применение электролиза в технике
- •Лекция 8. Электроны в кристаллах
- •8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
- •8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
- •8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •8.3.1. Собственная проводимость полупроводников
- •8.3.2. Примесные полупроводники
- •8.4. Электромагнитные явления на границе раздела сред
- •8.4.2. Фотопроводимость полупроводников
- •8.4.3. Люминесценция вещества
- •8.4.4. Термоэлектрические явления. Закон Вольта
- •8.4.5. Эффект Пельтье
- •8.4.6. Явление Зеебека
- •8.4.7. Явление Томсона
- •Заключение
- •Библиографический список Основной
- •Дополнительный
5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
Физическая
величина, равная работе сторонних сил
по перемещению положительного единичного
заряда вдоль всей цепи, включая источник
тока, называется электродвижущей силой
источника тока (ЭДС)
:
. (5.15)
Работа сторонних сил вдоль замкнутой цепи
,
(5.16)
где E* – напряженность поля сторонних сил.
Тогда
.
(5.17)
При
движении зарядов в проводнике кроме
сторонних сил на них действуют силы
электростатического поля (
).
Следовательно, в любой точке цепи на
заряд q действует результирующая сила:
.
(5.18)
Работа, совершаемая этой силой на участке 1 – 2,
(5.19)
Физическая величина, численно равная работе сторонних и электрических сил по перемещению положительного единичного заряда на данном участке цепи, называется падением напряжения или напряжением на данном участке цепи:
. (5.20)
Если
на участке цепи отсутствует ЭДС (
),
то
. (5.21)
При 1 - 2 = 0,
. (5.22)
Измеряются , U, (1 - 2) в системе СИ в вольтах (1 В).
Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей. Закон Джоуля-Ленца в дифференциальной и интегральной формах. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (КПД) источника постоянного тока.
6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
Классическая электронная теория проводимости металлов объясняет различные электрические свойства веществ существованием и движением в них так называемых квазисвободных электронов проводимости. Электроны проводимости при этом рассматриваются как электронный газ, подобный идеальному газу молекулярной физики.
До открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускали электрический ток. После чего исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу различных металлов не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Опыты доказали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.
Прямым доказательством, что электрический ток в металлах обусловливается движением электронов, были опыты Толмена и Стюарда, проведенные в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.
Представим себе проводящую катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжают движение по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.
Обозначим линейное ускорение катушки при торможении – a. Оно направлено по касательной к поверхности катушки. При достаточно плотной намотке и тонких проводах можно считать, что ускорение направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции Fин = mea, направленная противоположно ускорению. Под ее действием электрон ведет себя в металле так, как если бы на него действовало эффективное электрическое поле с напряженностью
.
6.1)
Поэтому эффективная электродвижущая сила в катушке, обусловленная инерцией свободных электронов,
,
(6.2)
где L – длина провода на катушке.
Все точки провода тормозятся с одинаковым ускорением, и поэтому ускорение вынесено за знак интеграла.
С учетом формулы (6.2) запишем закон Ома для замкнутой цепи в виде
,
(6.3)
где I – сила тока в замкнутой цепи;
R – сопротивление всей цепи, включая сопротивление проводов катушки, проводов внешней цепи и гальванометра.
Количество электричества, протекшее через поперечное сечение проводника в течение времени dt при силе тока I,
.
(6.4)
Поэтому в течение времени торможения катушки от начальной линейной скорости vo до полной остановки через гальванометр пройдет количество электричества
.
(6.5)
Значение q определяется по гальванометру, а значения L, R, vo известны. Поэтому можно найти как знак, так и абсолютное значение e/me. Эксперименты показали, что e/me соответствует отношению заряда электрона к его массе. Таким образом, было доказано, что наблюдаемый с помощью гальванометра ток обусловлен движением электронов.
В отсутствие электрического поля в проводниках электроны проводимости движутся хаотично, в произвольных направлениях со скоростями, обусловленными температурой, т.е. с так называемой тепловой скоростью u.
Через определенный промежуток времени t = , двигаясь по прямой, электрон проводимости может провзаимодействовать с ионом кристаллической решетки или с другим электроном проводимости. В результате такого взаимодействия, а оно считается в классической теории проводимости абсолютно упругим, сохраняются полные импульс и энергия, а величина и направление скорости движения могут измениться. Предельным является случай, когда через время, равное (время свободного пробега), направление скорости теплового движения электрона проводимости изменяется на противоположное. Время свободного пробега зависит от природы вещества и тем меньше, чем чаще происходят взаимодействия. Между соударениями (взаимодействиями) со скоростью u ничего не происходит.
П
ри
наложении электричес-кого поля с
напряженностью E
под действием силы F
= eE
электроны проводимости приоб-ретают
некоторое ускорение a
и направленное движение с изменяющейся
скоростью от vo
=0 до v = vmax
за время t = .
Изменение скорости направленного движения электрона проводимости происходит до его взаимодействия (рис. 6.1). В результате взаимодействия эта скорость так же может измениться как по величине, так и по направлению.
Если в единице объема проводника n электронов проводимости, которые в некоторый момент времени t обладают скоростью v, то можно определить заряд, прошедший через некоторую площадку S, расположенную перпендикулярно направлению скорости движения электронов проводимости:
,
(6.6)
где <v> - средняя скорость упорядоченного движения электронов проводимости.
Сила (величина) тока в проводнике в этом случае
. (6.7)
Плотность тока проводимости
.
(6.8)
В векторной форме
.
(6.9)
Согласно (6.8) для определения плотности электрического тока в проводнике необходимо определить среднюю скорость упорядоченного движения электронов проводимости.
Средняя скорость упорядоченного движения в данном случае может быть определена по формуле
,
(6.10)
т.к. в начальный момент времени t=0, когда отсутствует электрическое поле, vo=0.
Максимальная скорость упорядоченного движения, которую приобретает электрон под действием электрического поля за время свободного пробега,
,
где a – ускорение, приобретаемое электроном проводимости под действием электрического поля;
– время пробега электрона проводимости от взаимодействия до взаимодействия.
На основании второго закона Ньютона F = ma, где F - кулоновская сила,
F = eE.
Имеем:
;
;
.
(6.11)
Для средней скорости упорядоченного движения электронов проводимости получим
.
(6.12)
Зная среднюю скорость теплового движения электронов проводимости и среднее расстояние, проходимое ими от взаимодействия до взаимодействия, можно определить время между двумя последующими взаимодействиями:
. (6.13)
Сделав подстановку и необходимые преобразования, для плотности тока проводимости будем иметь
, (6.14)
где
- удельная электропроводность металла
проводника.
В векторной форме
.
(6.15)
Выражения (6.14) и (22.15) являются математической формой записи закона Ома в дифференциальной форме.
Закон Ома в дифференциальной форме справедлив для любых проводников, любых токов, характеризует плотность тока проводимости в любой точке проводника.
Из закона Ома в дифференциальной форме можно получить закон Ома в интегральной форме для замкнутой (или полной) цепи. Для чего выражение (6.15) умножим на величину элементарного участка цепи dl:
,
где
;
;
.
Таким образом, имеем
или
;
.
(6.16)
Проинтегрировав выражение (6.16) по замкнутому контуру L, получим
,
(6.17)
где
– сопротивление внешнего и внутреннего
участков цепи;
– ЭДС,
действующая в замкнутой цепи, численно
равная циркуляции вектора напряженности
поля сторонних сил;
– разность
потенциалов между двумя рассматриваемыми
точками замкнутой цепи.
Для замкнутой цепи
(1
- 2)
= 0;
.
Таким образом, имеем
или
,
(6.18)
где R1 – сопротивление внешнего участка цепи;
r – внутреннее сопротивление источника тока.
Из формулы (6.18)
.
(6.19)
Следовательно, ЭДС уравновешивает падение напряжения во внешней и внутренней цепи и тем самым обеспечивает непрерывное движение электронов проводимости.
Если цепь не замкнута и в ней отсутствует ЭДС, то
,
а
.
(6.20)
Выражения (6.18) и (6.20) являются математической формой записи закона Ома, соответственно, для полной (замкнутой) цепи и участка цепи, который был открыт им экспериментально. Сила тока в цепи прямопропорциональна ЭДС (напряжению на участке цепи) и обратно пропорциональна сопротивлению цепи.