- •1.Краткая теория развития гидравлики. Понятие науки гидравлики. Методы гидравлических исследований.
- •3.Силы, действующие на жидкость. Понятие давления.
- •4.Основные свойства жидкостей.
- •5.Гидростатическое давление и его свойства.
- •6.Основное уравнение гидростатики. Гидростатический напор.
- •7.Дифференциальные уравнения Эйлера.
- •8.Абсолютное и избыточное (манометрическое) давление. Барометры и манометры
- •9.Вакуум. Пьезометры и вакуумметры.
- •10.Основное уравнение гидростатики. Потенциальная удельная энергия жидкости
- •11.Потенциальный (пьезометрический) напор.
- •12.Силы давления на плоские и кривые поверхности.
- •13.Центр давления.
- •14.Закон Архимеда. Плавание тел.
- •15.Понятие о движении жидкости как непрерывной деформации материальной среды.
- •16.Установившееся и неустановившееся движение жидкости. Напорное и безнапорное течение.
- •17.Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение.
- •18.Элементарная струйка, поток жидкости, живое сечение. Гидравлический радиус, расход и средняя скорость.
- •19.Уравнение неразрывности. Понятие расхода.
- •20.Распределение сил в сплошной среде. Объемные и поверхностные силы.
- •21.Уравнение Бернулли для установившегося движения жидкости.
- •22.Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •23.Полный (гидродинамический) напор. Принцип Вентури. Трубка пито.
- •24.Влияние различных факторов на движение жидкости.
- •25.Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине). Кавитация
- •26.Касательные напряжения. Обобщенный закон Ньютона.
- •27.Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса
- •28.Пульсации скоростей при турбулентном режиме, мгновенная и осредненная местные скорости
- •29.Потери напора по длине при ламинарном равномерном движении жидкости
- •30.Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном движении.
- •31.Потери напора при турбулентном равномерном движении жидкости.
- •32.Механизм турбулизации потока: процесс перемешивания. Ядро течения и пристенный слой. Кавитация.
- •33.Полуэмпирические теории турбулентности
- •34.Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения
- •35.Местные сопротивления, основные их виды.
- •36.Истечение жидкости из отверстий, насадков и из-под затворов
- •37.Гидравлический расчет простых и сложных трубопроводов. Простой трубопровод постоянного сечения
- •38.Соединения трубопроводов. Трубопроводы с концевой раздачей
- •39.Трубопроводы с насосной подачей жидкости. Гидравлический удар
- •40.Понятие объемной гидромашины. Насосы, гидродвигатели. Напор насоса
- •41.Принципиальные схемы объемных гидромашин (огм). Поршневые насосы
- •42.Классификация огм
- •43.Виды возвратно-поступательных и роторных гидромашин
- •44.Основные признаки роторных гидромашин. Основные термины и их определения
- •45.Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, кпд, частота вращения, крутящий момент
- •46.Классификация, конструктивные схемы и принцип действия огм
- •47.Шестеренные насосы с внешним и внутренним зацеплением
- •48.Винтовые машины. Шиберные (пластинчатые) гидромашины однократного и многократного действия
- •49.Радиально-поршневые гидромашины
- •50.Аксиально-поршневые гидромашины, основные их схемы
- •51.Обозначение элементов гидро- и пневмосистем.
- •52.Основные понятия и определения, принцип действия гидроприводов.
- •53.Гидроаппаратура гидропривдов. Гидрораспределители, классификация.
- •54.Гидродроссели и дросселирующие гидрораспределители. Дроссели.
- •56.Струйный гидрораспределитель и гидрораспределитель сопло-заслонка. Гидроклапаны. Типы клапанов: переливной, предохранительный, редукционный. Течения в них. Расчет гидроклапанов.
- •57.Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и параллельном включении дросселя.
- •58.Сравнение способов регулирования гидроприводов.
- •59.Статические характеристики объемного гидропривода с дроссельным регулированием.
- •60.Методы измерения параметров объемных гидроприводов. Измерение давления, расхода, температуры рабочих сред, частоты вращения и крутящего момента.
9.Вакуум. Пьезометры и вакуумметры.
Пьезометрическая высота, равная , представляет собой высоту столба данной жидкости, соответствующую данному давлению .Пьезометрическую высоту, соответствующую избыточному давлению, можно определить по пьезометру. Пьезометр представляет собой вертикальную стеклянную трубку, верхний конец которой открыт в атмосферу, а нижний присоединен к емкости, в которой измеряется давление
Применяя формулу к жидкости, заключенной в пьезометре, получим .где — абсолютное давление в жидкости на уровне присоединения пьезометра; — атмосферное давление.Отсюда высота подъема жидкости в пьезометре где ризб — избыточное давление на уровне присоединения пьезометра. Очевидно, что если на свободную поверхность покоящейся жидкости действует атмосферное давление, то пьезометрическая высота для любой точки рассматриваемого объема жидкости равна глубине расположения этой точки.
Если абсолютное давление в жидкости или газе меньше атмосферного, то говорят, что имеет место разрежение, или вакуум. За величину разрежения, или вакуума, принимается недостаток до атмосферного давления: или .Простейшим устройством для измерения вакуума может служить стеклянная трубка. Вакуум в жидкости А можно измерять при помощи U-образной трубки или перевернутой U-образной трубки один конец которой опущен в сосуд с жидкостью Для измерения давления жидкостей и газов в лабораторных условиях помимо пьезометра пользуются жидкостными и механическими манометрами.
10.Основное уравнение гидростатики. Потенциальная удельная энергия жидкости
Рассмотрим случай равновесия жидкости, когда на нее действует лишь одна массовая сила, сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объема жидкости. Свободная поверхность-это граница раздела жидкой и газообразной фазы.Пусть жидкость содержится в сосуде и на ее свободную поверхность действует давление . Найдем гидростатическое давление в произвольно взятой точке М, расположенной на глубине .Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем высотой . Рассмотрим условие равновесия указанного объема жидкости, выделенного из общей массы жидкости.
Запишем сумму сил, действующих на рассматриваемый объем в проекции на вертикаль:
.
Последний член уравнения представляет собой вес жидкости в указанном объеме. Сократив выражение на , и перегруппировав члены, найдем
Полученное уравнение называют основным уравнением. гидростатики; по нему можно подсчитать давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости.
Величина является одинаковой для всех точек объема жидкости, поэтому, учитывая свойство гидростатического давления, можно сказать, что давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости и по всем направлениям одинаково. Это положение известно под названием закона Паскаля.
Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня. В данном случае поверхностями уровня являются горизонтальные плоскости, а свободная поверхность является одной из поверхностей уровня.Возьмем на произвольной высоте горизонтальную плоскость сравнения, от которой вертикально вверх будем отсчитывать координаты . Обозначив через координату точки М, через координату свободной поверхности жидкости и заменив в уравнении (2.2) h на и , получим
.
Так как точка М взята произвольно, можно утверждать, что для всего рассматриваемого неподвижного объема жидкости
.
Координата называется геометрической высотой. Величина имеет линейную размерность и называется пьезометрической высотой. Сумма ) называется гидростатическим напором.
Таким образом, гидростатический напор есть величина постоянная для всего объема неподвижной жидкости.С энергетической точки зрения z+ - удельная потенциальная энергия жидкости.