
- •1.Краткая теория развития гидравлики. Понятие науки гидравлики. Методы гидравлических исследований.
- •3.Силы, действующие на жидкость. Понятие давления.
- •4.Основные свойства жидкостей.
- •5.Гидростатическое давление и его свойства.
- •6.Основное уравнение гидростатики. Гидростатический напор.
- •7.Дифференциальные уравнения Эйлера.
- •8.Абсолютное и избыточное (манометрическое) давление. Барометры и манометры
- •9.Вакуум. Пьезометры и вакуумметры.
- •10.Основное уравнение гидростатики. Потенциальная удельная энергия жидкости
- •11.Потенциальный (пьезометрический) напор.
- •12.Силы давления на плоские и кривые поверхности.
- •13.Центр давления.
- •14.Закон Архимеда. Плавание тел.
- •15.Понятие о движении жидкости как непрерывной деформации материальной среды.
- •16.Установившееся и неустановившееся движение жидкости. Напорное и безнапорное течение.
- •17.Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение.
- •18.Элементарная струйка, поток жидкости, живое сечение. Гидравлический радиус, расход и средняя скорость.
- •19.Уравнение неразрывности. Понятие расхода.
- •20.Распределение сил в сплошной среде. Объемные и поверхностные силы.
- •21.Уравнение Бернулли для установившегося движения жидкости.
- •22.Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •23.Полный (гидродинамический) напор. Принцип Вентури. Трубка пито.
- •24.Влияние различных факторов на движение жидкости.
- •25.Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине). Кавитация
- •26.Касательные напряжения. Обобщенный закон Ньютона.
- •27.Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса
- •28.Пульсации скоростей при турбулентном режиме, мгновенная и осредненная местные скорости
- •29.Потери напора по длине при ламинарном равномерном движении жидкости
- •30.Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном движении.
- •31.Потери напора при турбулентном равномерном движении жидкости.
- •32.Механизм турбулизации потока: процесс перемешивания. Ядро течения и пристенный слой. Кавитация.
- •33.Полуэмпирические теории турбулентности
- •34.Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения
- •35.Местные сопротивления, основные их виды.
- •36.Истечение жидкости из отверстий, насадков и из-под затворов
- •37.Гидравлический расчет простых и сложных трубопроводов. Простой трубопровод постоянного сечения
- •38.Соединения трубопроводов. Трубопроводы с концевой раздачей
- •39.Трубопроводы с насосной подачей жидкости. Гидравлический удар
- •40.Понятие объемной гидромашины. Насосы, гидродвигатели. Напор насоса
- •41.Принципиальные схемы объемных гидромашин (огм). Поршневые насосы
- •42.Классификация огм
- •43.Виды возвратно-поступательных и роторных гидромашин
- •44.Основные признаки роторных гидромашин. Основные термины и их определения
- •45.Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, кпд, частота вращения, крутящий момент
- •46.Классификация, конструктивные схемы и принцип действия огм
- •47.Шестеренные насосы с внешним и внутренним зацеплением
- •48.Винтовые машины. Шиберные (пластинчатые) гидромашины однократного и многократного действия
- •49.Радиально-поршневые гидромашины
- •50.Аксиально-поршневые гидромашины, основные их схемы
- •51.Обозначение элементов гидро- и пневмосистем.
- •52.Основные понятия и определения, принцип действия гидроприводов.
- •53.Гидроаппаратура гидропривдов. Гидрораспределители, классификация.
- •54.Гидродроссели и дросселирующие гидрораспределители. Дроссели.
- •56.Струйный гидрораспределитель и гидрораспределитель сопло-заслонка. Гидроклапаны. Типы клапанов: переливной, предохранительный, редукционный. Течения в них. Расчет гидроклапанов.
- •57.Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и параллельном включении дросселя.
- •58.Сравнение способов регулирования гидроприводов.
- •59.Статические характеристики объемного гидропривода с дроссельным регулированием.
- •60.Методы измерения параметров объемных гидроприводов. Измерение давления, расхода, температуры рабочих сред, частоты вращения и крутящего момента.
29.Потери напора по длине при ламинарном равномерном движении жидкости
Максимальная скорость наблюдается в центре трубы, скорость частиц возле стенок трубопровода приблизительно=0, т.к. существ. Трение об стенки трубопровода. Потери энергии при ламинарном течении:
,
где
- коэффициент гидравлического трения
или коэф.Дарси
30.Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном движении.
Если боковая поверхность трубы есть поверхность цилиндра, то естественно допустить существование ламинарного течения с линиями тока в виде прямых, параллельных образующим цилиндра.
Для отыскания скорости имеем уравнение Пуассона с постоянной правой частью
граничным
условием которого является равенство
нулю скорости не стенке трубы.
В
общем случае рассматриваемое течение
может быть обусловлено как перепадом
давления
,
так и осевым движением одного из цилиндров
(речь идёт о рассмотрении цилиндрической
трубы, состоящей из двух цилиндров (рис.
1.20)).
Допустим,
что внутренний цилиндр перемещается в
направлении оси z
со скоростью
.
Такому движению соответствуют граничные
условия
при
,
при
.
Использовав их для определения постоянных
и
,
найдём
В частном случае, если перепада давления нет, то получим осесимметричное течение Куэтта с распределением скоростей
и касательными напряжениями в слое жидкости
,где
.
Из
этой формулы следует, что если зазор
между цилиндрами
мал, то касательные напряжения в слое
жидкости могут быть весьма значительными.
При
неподвижных цилиндрах (
)
имеем течение в кольцевой трубе с
распределением скоростей
Эта зависимость позволяет вычислить все другие характеристики течения. В частности, расход
Разделив
расход на площадь
кольца, найдём выражение для средней
скорости
которое позволяет вычислять падение давления в кольцевой трубе.
Потери напора при ламинарном течении также находятся по формуле Вейсбаха-Дарси:
,
где
- безразмерный коэффициент пропорциональности,
называемый коэффициентом
потерь Дарси или
коэффициентом сопротивления
31.Потери напора при турбулентном равномерном движении жидкости.
Основной расчётной формулой для потерь напора при турбулентном течении в круглых трубах является уже приводимая формула Вейсбаха-Дарси и имеющая вид
,
где
-
коэффициент потерь на трение при
турбулентном течении, или коэффициент
Дарси. Существует ряд формул определяющих
значение
.
I-зона
ламинар. Течение жидкости
;Re
<2900
II-зона турбулентного течение
∆-шереховатость труб
4000<
Re
<10
Формула Блазиуса имеет вид
Формула Альтиуля
III-область больших значений,шероховатости труб,высоких скоростей.
Формула Альтиуля